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1 Introduction

Suppose we observe independent and identically distributed p-variate random variables X1, . . . ,Xn with covariance

matrix Σp×p and the goal is to estimate the unknown matrix Σp×p based on the sample {Xi : i = 1, . . . , n}. The

most natural choice would be to use the sample covariance matrix

Sn =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T ,

(or the bias corrected version with 1/n−1 in place of 1/n) but it was shown to perform poorly in high dimensional

settings, i.e. when p/n → α ∈ (0, 1). To convince ourselves that this is actually the case, suppose that d/n =

α ∈ (0, 1) and Σ = Id, with each sample Xi ∼ N (0, Id) for i = 1, . . . , n. Using these n samples, we generated the

sample covariance matrix, and then computed its vector of eigenvalues γ(Σ̂) ∈ Rd, say arranged in non-increasing

order as

γmax(Σ̂) = γ1(Σ̂) ≥ γ2(Σ̂) ≥ · · · ≥ γd(Σ̂) = γmin(Σ̂) ≥ 0

The plots below show a histogram of the vector γ(Σ̂) ∈ Rd of eigenvalues: Figure 1(a) corresponds to the case

(n, d) = (4000, 800) or α = 0.2, whereas Figure 1(b) shows the pair (n, d) = (4000, 2000) or α = 0.5. If the sample

covariance matrix were converging to the identity matrix, then the vector of eigenvalues γ(Σ̂) should converge to

the all-ones vector, and the corresponding histograms should concentrate around 1. Instead, the histograms in

both plots are highly dispersed around 1, with differing shapes depending on the aspect ratios. These shapes are

characterized by an asymptotic distribution known as the Marčenko-Pastur law. Apart from this, the key message

here is to realize that the sample covariance estimator is a consistent estimator of Σ when d/n → 0, whereas if

Figure 1: Simulations showing the Marčenko-Pastur law.
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d/n = α ∈ (0, 1) this is no more the case!

Can we do better in high dimensions? The idea of Cai et al. (2010) is to use regularisation and shrink down

the off-diagonal entries of the sample covariance matrix progressively to zero to get a new estimator, which they

call tapering estimator. This is a similar approach to Bickel and Levina (2008), where they introduce the so-called

banding estimator, whose entries are also shrunk to zero, but not progressively. The choice of shrinking the entries

of the sample covariance matrix down to zero linearly, and not abruptly, makes the all difference since the tapering

estimator of Cai et al. (2010) has been proven to be minimax optimal with respect to both the spectral and the

Frobenius norms over the class of distributions with covariance matrix in Fα defined below, whereas the banding

estimator of Bickel and Levina (2008) is not.

In what follows, we will define the tapering estimator formally, and focus on its risk with respect to the spectral

norm only. In particular, we will state Theorem 2 of Cai et al. (2010), which gives an upper bound for the risk, and

Theorem 3, which shows that this estimator is minimax optimal. Before moving on, we conclude this introduction

with some notation. We will denote with X ∼ SG(ρ) a sub-Gaussian random vector with proxy ρ2, and with

||A|| = max{σmax(A), |σmin(A)|} the spectral norm of the matrix A, where σmax, σmin are the maximum and

minimum singular value respectively. Finally, we indicate with Fα the class of matrices

Fα = Fα (M0,M) =

{
Σ : max

j

∑
i

{|σij | : |i− j| > k} ≤Mk−α for all k, and λmax(Σ) ≤M0

}
,

where λmax(Σ) is the maximum eigenvalue of the matrix Σ, and α > 0,M > 0, where α can be interpreted as the

smoothing parameter in nonparametric function estimation problems.

2 The tapering estimator

Let be σ∗
ij the (i, j)−th entry of the sample covariance matrix Sn. For a given even integer k with 1 ≤ k ≤ p, we

define a tapering estimator as

Σ̂ = Σ̂k =
(
wijσ

∗
ij

)
p×p

,

and the weights

wij = k−1
h

{
(k − |i− j|)+ − (kh − |i− j|)+

}
,

where kh = k/2. Without loss of generality, we assume that k is even. Note that the weights wij can be rewritten

as

wij =


1, when |i− j| ≤ kh,

2− |i−j|
kh

, when kh < |i− j| < k,

0, otherwise.

Here, w = (wij)p×p is a matrix of weights which governs the decay towards zero of the σ∗
ij based on the integer

k, which a tuning parameter that can be chosen to get the sharpest upper bound possible. An illustration of the

tapering estimator is given in Figure 2.

Now, define by Pα(M0,M, ρ) the class of probability distributions such that X ∼ SG(ρ) with covariance matrix

in Fα(M0,M). Then we have the following result:

Theorem 1 (Theorem 2 in Cai et al. (2010)). The tapering estimator Σ̂k of the covariance matrix Σp×p with
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Figure 2: Tapering estimator. The entries are shrunk down towards zero in a linear fashion depending on the weights
(wij)p×p.

p ≥ n1/(2α+1) satisfies

sup
Pα

E
∥∥∥Σ̂k − Σ

∥∥∥2 ≤ C
k + log p

n
+ Ck−2α

for k = o(n), log p = o(n) and some constant C > 0. In particular, the estimator Σ̂ = Σ̂k with k = n1/(2α+1)

satisfies

sup
Pα

E∥Σ̂− Σ∥2 ≤ Cn−2α/(2α+1) + C
log p

n
.

It is clear that the optimal choice of k is of order n1/(2α+1). The upper bound is thus rate optimal among the

class of the tapering estimators, but, as the next result shows, the estimator Σ̂k with k = n1/(2α+1) is in fact rate

optimal among all estimators.

Theorem 2 (Theorem 3 in Cai et al. (2010)). Suppose p ≤ exp(γn) for some constant γ > 0. The minimax risk

for estimating the covariance matrix Σ over Pα under the operator norm satisfies

inf
Σ̂

sup
Pα

E∥Σ̂− Σ∥2 ≥ cn−2α/(2α+1) + c
log p

n
.

The proof of this result is based on the construction of a finite collection of multivariate normal distributions,

for which we calculate the total variation affinity between pairs of probability measures in the collection. Before

moving to this, it is worth mentioning as a final remark that the optimal rate is of the order

n−2α/(2α+1) +
log p

n
,

which is the sum of a parametric and a nonparametric rate. The latter is of the same order as the optimal rate

for nonparametric density estimation with respect to the L2 norm over the class of α-Holder continuous functions.

The similarity is simple: the level of smoothness here is represented by how fast the off-diagonal entries of Σ goes

to zero, and the faster they decay, the better our estimator. Moreover, if p is small, say p = o
(
n1/(2α+1)

)
, p has no

effect on the convergence rate and the rate is purely driven by the smoothness parameter α. However, when p is

large, that is, log p ≫ n1/(2α+1), p plays a significant role in determining the minimax rate. Furthermore, coming
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back to the banding estimator

Σ̂B =
(
σ∗
ijI{|i− j| ≤ k}

)
given in Bickel and Levina (2008), it is easy to see that is not rate optimal. The thigher upper bound is attained

when

k =

(
log p

n

)1/(2(α+1))

,

leading to the rate of convergence (
log p

n

)α/(α+1)

.

But if you take, for example, α = 1/2 and p = e
√
n, Bickel and Levina (2008)’s rate is n−1/6, while the optimal

rate given in Cai et al. (2010) is n−1/2.

3 Proof of minimax optimality

As stated above, the first step of the proof is to define a suitable class of multivariate normal distributions. To this

aim, for given positive integers k and m with 2k ≤ p and 1 ≤ m ≤ k, define the p × p matrix B(m, k) = (bij)p×p

with

bij = I{i = m and m+ 1 ≤ j ≤ 2k, or j = m and m+ 1 ≤ i ≤ 2k}.

Set k = n1/(2α+1) and a = k−(α+1). The generic matrix B(m, k) is shown in Figure 3.

Figure 3: Visual representation of the matrix B(m, k).

We then define the collection of 2k covariance matrices as

F11 =

{
Σ(θ) : Σ(θ) = Ip + τa

k∑
m=1

θmB(m, k), θ = (θm) ∈ {0, 1}k
}
,

where Ip is the p × p identity matrix and 0 < τ < 2−α−1M . Without loss of generality, we assume that M0 > 1

and ρ > 1. Otherwise, we can replace Ip by εIp for 0 < ε < min {M0, ρ}. For 0 < τ < 2−α−1M it is easy to check

that F11 ⊂ Fα (M0,M) as n→ ∞. In addition to F11, we also define a collection of diagonal matrices

F12 =

{
Σm : Σm = Ip +

(√
τ

n
log p1I{i = j = m}

)
p×p

, 0 ≤ m ≤ p1

}
,
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where p1 = min
{
p, en/2

}
and 0 < τ < min

{
(M0 − 1)

2
, (ρ− 1)2, 1

}
. Let F1 = F11 ∪ F12. It is clear that

F1 ⊂ Fα (M0,M). Then, the strategy is as follows: we show that

1. infΣ̂ supF11
E∥Σ̂− Σ∥2 ≥ cn−2α/(2α+1) using Assouad’s lemma

2. infΣ̂ supF12
E∥Σ̂− Σ∥2 ≥ c log p/n using Le Cam’s method,

and this is enough for proving the lower bound since

inf
Σ̂

sup
Fα

E∥Σ̂− Σ∥2 ≥ inf
Σ̂

sup
F1

E∥Σ̂− Σ∥2 = inf
Σ̂

sup
F11∪F12

E∥Σ̂− Σ∥2 ≥

1

2

(
inf
Σ̂

sup
F11

E∥Σ̂− Σ∥2 + inf
Σ̂

sup
F12

E∥Σ̂− Σ∥2
)

≥ c

2

(
n−2α/(2α+1) +

log p

n

)
.

3.1 Proof of infΣ̂ supF11
E∥Σ̂− Σ∥2 ≥ cn−2α/(2α+1) using Assouad’s lemma

Assouad’s lemma can be seen as a generalisation of Le Cam’s method where we consider multiple, say k, pairwise

comparisons at the same time, instead of the classical two-points testing procedure of Le Cam. As a drawback, we

must point out that Assouad’s method cannot be applied for certain loss functions, and can be applied only when

we can upper bound the risk we are considering with the maximum risk on the hypercube of a certain dimension

k. For a more detailed discussion of such limitations, refer to Tsybakov (2009). Nonetheless, if these conditions

are satisfied, we are able to push up our lower bound by a factor of k corresponding to the dimensionality of the

associated hypercube.

Lemma 3. Let Θ = {0, 1}k and let T be an estimator based on an observation from a distribution in the collection

{Pθ, θ ∈ Θ}. Then for all s > 0

max
θ∈Θ

2sEθd
s(T, ψ(θ)) ≥ min

H(θ,θ′)≥1

ds (ψ(θ), ψ (θ′))

H (θ, θ′)
· k
2
· min
H(θ,θ′)=1

∥Pθ ∧ Pθ′∥ .

For the proof, refer to Lemma 2.12 in Tsybakov (2009), or to this beautiful blog. Assouad’s lemma is connected

to multiple comparisons. In total, there are k comparisons. The lower bound has three factors. The first factor is

basically the minimum cost of making a mistake per comparison, and the last factor is the lower bound for the total

probability of making type I and type II errors for each comparison, and k/2 is the expected number of mistakes

one makes when Pθ and Pθ′ are not distinguishable from each other when H (θ, θ′) = 1.

Consider now X1, . . . ,Xn
i.i.d.∼ N(0,Σ(θ)) with Σ(θ) ∈ F11. Denote the joint distribution by Pθ. Applying

Assouad’s lemma to the parameter space F11, we have

inf
Σ̂

max
θ∈{0,1}k

22Eθ∥Σ̂− Σ(θ)∥2

≥ min
H(θ,θ′)≥1

∥Σ(θ)− Σ (θ′)∥2

H (θ, θ′)

k

2
min

H(θ,θ′)=1
∥Pθ ∧ Pθ′∥ .

As for the first factor, Lemma 5 in Cai et al. (2010) gives

min
H(θ,θ′)≥1

∥Σ(θ)− Σ (θ′)∥2

H (θ, θ′)
≥ cka2

for some universal constant c > 0. For the third one, Lemma 6 in Cai et al. (2010) states that, if X1, . . . ,Xn
i.i.d.∼
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N(0,Σ(θ)) with Σ(θ) ∈ F11 and if Pθ denote the joint distribution, then

min
H(θ,θ′)=1

∥Pθ ∧ Pθ′∥ ≥ c

for some universal constant c > 0. Combining Assouad’s lemma with these two results and choosing k = n1/(2α+1)

give immediately that

max
Σ(θ)∈F11

22Eθ∥Σ̂− Σ(θ)∥2 ≥ c2

2
k2a2 ≥ c1n

−2α/(2α+1)

for some universal constant c1 > 0.

3.2 Proof of infΣ̂ supF12
E∥Σ̂− Σ∥2 ≥ c log p/n using Le Cam’s method

For the second lower bound, we will make use of Le Cam’s convex hull method.

Lemma 4. Let X be an observation from a distribution in the collection {Pθ, θ ∈ Θ} where Θ = {θ0, θ1, . . . , θp1},
and let L be the loss function. Define r (θ0, θm) = inft [L (t, θ0) + L (t, θm)] and rmin = inf1≤m≤p1 r (θ0, θm), and

denote P = 1
p1

∑p1

m=1 Pθm . Let T be an estimator of θ based on an observation from a distribution in the collection

{Pθ, θ ∈ Θ = {θ0, θ1, . . . , θp1}}, then
sup
θ

EL(T, θ) ≥ 1

2
rmin

∥∥Pθ0 ∧ P
∥∥ .

For the proof, refer to Section 15.2.2 in Wainwright (2019), or again to the same blog as before.

In order to apply Le Cam’s method, we need to first construct a parameter set. For 1 ≤ m ≤ p1, let Σm be

a diagonal covariance matrix with σmm = 1 +
√
τ log p1

n , σii = 1 for i ̸= m, and let Σ0 be the identity matrix.

Let Xl =
(
X l

1, X
l
2, . . . , X

l
p

)T ∼ N (0,Σm), and denote the joint density of X1, . . . ,Xn by fm, 0 ≤ m ≤ p1 with

p1 = max
{
p, en/2

}
, which can be written as follows:

fm =
∏

1≤i≤n,1≤j≤p,j ̸=m

ϕ1
(
xij
)
·
∏

1≤i≤n

ϕσmm

(
xim
)
,

where ϕσ, σ = 1 or σmm, is the density of N
(
0, σ2

)
. Denote by f0 the baseline joint density of X1, . . . ,Xn when

Xl ∼ N (0,Σ0).

Let θm = Σm for 0 ≤ m ≤ p1 and the loss function L be the squared operator norm. It is easy to see

r (θ0, θm) = 1
2τ

log p1

n for all 1 ≤ m ≤ p1. Then the lower bound

inf
Σ̂

sup
F12

E∥Σ̂− Σ∥2 ≥ c log p/n

follows immediately from Le Cam’s convex hull lemma if there is a universal constant c > 0 such that

∥∥Pθ0 ∧ P
∥∥ ≥ c.

Note that for any two densities q0 and q1,
∫
q0 ∧ q1dµ = 1− 1

2

∫
|q0 − q1| dµ, and Jensen’s inequality implies

[∫
|q0 − q1| dµ

]2
=

(∫ ∣∣∣∣q0 − q1
q1

∣∣∣∣ q1dµ)2

≤
∫

(q0 − q1)
2

q1
dµ =

∫
q20
q1
dµ− 1.
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Hence ∫
q0 ∧ q1dµ ≥ 1− 1

2

(∫
q20
q1
dµ− 1

)1/2

,

so that it thus suffices to show that ∫ (
1

p1

p1∑
m=1

fm

)2

/f0dµ− 1 → 0,

that is,

1

p21

p1∑
m=1

∫
f2m
f0
dµ+

1

p21

∑
m̸=j

∫
fmfj
f0

dµ− 1 → 0.

We now calculate
∫ fmfj

f0
dµ. For m ̸= j it is easy to see∫

fmfj
f0

dµ− 1 = 0.

When m = j, we have

∫
f2m
f0
dµ =

(√
2πσmm

)−2n

(
√
2π)−n

∏
1≤i≤n

∫
exp

[(
xim
)2(− 1

σmm
+

1

2

)]
dxim

=
[
1− (1− σmm)

2
]−n/2

=

(
1− τ

log p1
n

)−n/2

.

Thus ∫ (
1

p1

p1∑
m=1

fm

)2

/f0dµ− 1

=
1

p21

p1∑
m=1

(∫
f2m
f0
dµ− 1

)

≤ 1

p1

(
1− τ

log p1
n

)−n/2

− 1

p1

= exp

[
− log p1 −

n

2
log

(
1− τ

log p1
n

)]
− 1

p1
→ 0

for 0 < τ < 1, where the last step follows from the inequality log(1− x) ≥ −2x for 0 < x < 1/2.
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