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Abstract

We study the problem of testing whether the missing values of a potentially high-dimensional dataset

are Missing Completely at Random (MCAR). We relax the problem of testing MCAR to the problem of

testing the compatibility of a collection of covariance matrices, motivated by the fact that this procedure

is feasible when the dimension grows with the sample size. Our first contributions are to define a natural

measure of the incompatibility of a collection of correlation matrices, which can be characterised as the

optimal value of a Semi-definite Programming (SDP) problem, and to establish a key duality result

allowing its practical computation and interpretation. By analysing the concentration properties of the

natural plug-in estimator for this measure, we propose a novel hypothesis test, which is calibrated via

a bootstrap procedure and demonstrates power against any distribution with incompatible covariance

matrices. By considering key examples of missingness structures, we demonstrate that our procedures are

minimax rate optimal in certain cases. We further validate our methodology with numerical simulations

that provide evidence of validity and power, even when data are heavy tailed. Furthermore, tests of

compatibility can be used to test the feasibility of positive semi-definite matrix completion problems

with noisy observations, and thus our results may be of independent interest.

1 Introduction

Incomplete data are a common occurrence in almost all areas of statistical application, and the mechanisms

leading to such data are diverse. For example, subjects in a survey may choose not to respond to cer-

tain questions, leading to missing values, or a practitioner may wish to combine data collected in different

studies, where different variables were recorded in each. With incomplete data, traditional approaches be-

come unreliable or even inapplicable, leading to a significant effect on the conclusions that can be drawn

from the data. The most common approaches to dealing with missing values are to remove any incomplete

observations, and thus to perform a complete-case analysis, or to replace any missing entry with a represen-

tative value, using an imputation method (e.g. Yates, 1933; van Buuren and Groothuis-Oudshoorn, 2011;

Stekhoven and Bühlmann, 2011). However, the validity of such procedures, and the choice of an appropriate

one, depends crucially on the mechanism that determines the missingness. Mechanisms have traditionally

been classified as Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At

Random (MNAR) (e.g. Little and Rubin, 2002) according to the dependence structure between the variables
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themselves and their missingness, with such assumptions being required to link observations to targets of

inference.

The typical formal setting is to suppose that we observe independent and identically distributed copies

of a random object X ◦Ω, where X takes values in some product space X =
∏d
j=1 Xj , where Ω takes values

in {0, 1}d and where we define the operator ◦ by

(x ◦ ω)j =

xj if ωj = 1,

NA if ωj = 0.

The assumptions named above then control the dependence between the dataX and the missingness indicator

Ω. The simplest case of MCAR is when these are independent, denoted X ⊥⊥ Ω, so that the data we observe

is representative of the population, even if it is incomplete∗. Under MCAR we can often employ statistical

methodologies that are easy to interpret and make good use of all incomplete data, with solid theoretical

guarantees having been developed in various modern statistical problems such as high-dimensional regression

(Loh and Wainwright, 2012), high-dimensional or sparse principal component analysis (Zhu et al., 2022;

Elsener and van de Geer, 2019), classification (Cai and Zhang, 2019; Sell et al., 2024), and precision matrix

and changepoint estimation (Follain et al., 2022). MCAR also allows for the use of a simple complete-case

analysis which, in certain cases, such as when we have small sample sizes, can be preferable to complex

procedures (e.g. Aleksić et al., 2023). However, if MCAR does not hold, which is common in practice,

alternative methods may be required.

Hypothesis tests can be used to guide practitioners in deciding whether or not missingness assumptions

are reasonable. The goal of this work is to study the problem of testing the hypothesis of MCAR, which has

been the subject of much research in the missing data literature. Most prior work has been developed within

the context of parametric models. For example, Little (1988) works under the hypothesis that the data are

Gaussian in the setting that all pairs of variable are observed together (see Section 6 for further details).

Fuchs (1982) considers discrete data in the setting that a large number of complete cases are available.

In both cases the methods are likelihood ratio tests, with the MLEs calculated using the EM algorithm

(Dempster et al., 1977) and validity and power guarantees based on classical asymptotics. More recently,

Berrett and Samworth (2023) provided a nonparametric formulation of the problem and methodology that

was proved to be widely powerful under minimal assumptions. The key insight of Berrett and Samworth

(2023) is to relate the problem of testing MCAR to the problem of testing compatibility, for which we now

recall the definition. For S ⊆ [d] := {1, . . . , d} denote by {Ω = 1S} the event that Xj is observed if and only

if j ∈ S, write S = {S : P(Ω = 1S) > 0} for the set of all possible observation patterns and write PS for

the distribution of the observation XS |{Ω = 1S}. We say that the collection (PS : S ∈ S) is compatible if

there exists a distribution P on X with marginal distribution PS on XS for all S ∈ S. Under MCAR, the

distribution PS is equal to the marginal distribution of the population distribution L(X) on XS :=
∏
j∈S Xj ,

so it must be the case that (PS : S ∈ S) is compatible. Hence, if PS := (PS : S ∈ S) is incompatible,

then the data cannot be MCAR. In fact, it is shown (Berrett and Samworth, 2023, Proposition 1) that

this reasoning is tight in that it is not possible to rule out MCAR based on observations of X ◦ Ω if PS is

∗This scenario is sometimes referred to as everywhere MCAR, which should not be confused with realised MCAR (see Seaman
et al. (2013) for a more detailed discussion on this distinction)
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compatible. In general, fully testing the compatibility of a collection of distributions requires us to look at

complex interactions between the distributions, and methods for doing so will have sample complexity that

is exponential in the dimension d. Our work aims to provide methods that are valid and powerful without

strong assumptions while being effective as the dimension grows.

Our methodology will be based on testing the compatibility of collections of covariance matrices, which

can be estimated consistently even for large d. Earlier studies have employed the covariance matrix to

assess MCAR. As briefly discussed above, Little (1988) studied a likelihood ratio test of MCAR, effectively

examining the homogeneity of means and covariances under the assumption of normality. However, Little

expressed scepticism about its effectiveness unless the sample size is exceptionally large and the assumption

of normality holds. This scepticism was further validated in simulations by Kim and Bentler (2002), who

also developed a test for consistency of means and covariances based on generalised least squares. Both of

these approaches work by comparing the sample covariance matrix associated to a given missingness pattern

to the corresponding submatrix of an estimated complete covariance matrix. More recently, Jamshidian

and Jalal (2010) developed k-sample tests of the equality of covariance matrices, given complete data,

based on Hawkins’ test (Hawkins, 1981). Using empirical evidence, they then argued that these tests could

be combined with imputation techniques to test the homogeneity of covariance matrices calculated using

incomplete data. These methodologies can be effective when the corresponding assumptions are met and

when a complete covariance matrix can be consistently estimated.

Our method works by directly checking the compatibility of the observed sample covariance matrices,

making no assumptions on the form of the underlying distributions and not requiring the estimation of a

complete covariance matrix. In particular, this second point means that our test can be applied with any

collection S of missingness patterns. More precisely, at the population level, we will consider ΣS = (ΣS : S ∈
S), a collection of suitably-normalised covariance matrices ΣS associated to the law of XS |{Ω = 1S}, and
design a statistical test to check if ΣS is compatible, meaning that each ΣS can be obtained by marginalising

a general d × d positive-semi-definite matrix Σ, i.e. (Σ)S = ΣS . If MCAR holds then for each S ∈ S we

must have Cov(XS |Ω = 1S) = (Cov(X))S , the block of the covariance matrix of X corresponding to the

variables in S, so that the collection (ΣS : S ∈ S) must be compatible. Hence, if we can reject the hypothesis

H0 : ΣS compatible, then we can reject the hypothesis of MCAR. See Figure 1 for a pictorial summary of the

key concepts so far.

More generally, one can consider the problem of testing the compatibility of moments of order p ≥ 1

and, if it is found that these moments are incompatible, one can reject MCAR. For p = 1, this problem

reduces to testing the compatibility of mean vectors, which essentially boils down to testing the equality of

means. This has been studied in the statistical literature for over a century, and we refer to existing methods

for solving this problem (e.g. Wilks, 1946; Little, 1988). In order to have power against a wider range of

alternatives, while limiting the complexity of the testing procedure, we restrict attention in this work to the

natural p = 2 problem. Here there are still various ways in which compatibility can fail. For example, we

can rule out H0 if ΣS is inconsistent, in the sense that that there are two observation patterns S1, S2 ∈ S
for which (ΣS1

)S1∩S2
̸= (ΣS2

)S1∩S2
, meaning that there exists a pair of variables whose covariance takes

different values in different observation patterns. Testing the consistency of covariance matrices reduces to

testing the equality of smaller covariance matrices, which has again been previously studied (e.g. Hawkins,

1981). The corresponding nonparametric problem of testing the consistency of distributions was studied by

3



Figure 1: Our framework. We relax the methodology in Berrett and Samworth (2023) and consider (suitably nor-
malised) covariance matrices instead of full distributions. The price we pay is to create an extra ring (red area) in
which we cannot detect departure from H0 just by looking at ΣS. For example, if the collection of third-moment
tensors were inconsistent, but ΣS were compatible, we would not be able to reject MCAR, although PS would be
incompatible.

Li and Yu (2015); Spohn et al. (2021) in the context of testing MCAR. However, it is possible to test more

than consistency. As a concrete example, consider the case where d = 3, where S = {{1, 2}, {1, 3}, {2, 3}},
and where

Σij =

(
1 ρij

ρij 1

)
with ρ23 = ρ13 = −ρ12 = ρ. Then ΣS is compatible if and only if ρ ≤ 1/2, even though it is always consistent.

This is because the only matrix Σ such that (Σ)S = ΣS for all S ∈ S is

Σ =

 1 −ρ ρ

−ρ 1 ρ

ρ ρ 1

 ,

whose eigenvalues are 1 + ρ and 1− 2ρ, which therefore is not positive semi-definite if ρ > 1/2.

The above example is relatively simple because any pair of variables is observed together so that the full

covariance matrix can be estimated. However, we can characterise compatibility for any S (see Proposition 4).

While the compatibility of distributions can be characterised using linear programming (e.g. Kellerer, 1984),

characterising the compatibility of covariance matrices requires ideas from semi-definite programming (SDP),

which studies linear optimisation problems over spectrahedra (e.g. Blekherman et al., 2012; Vandenberghe

and Boyd, 1996). If ΣS is consistent, compatibility is equivalent to the feasibility of a positive semi-definite

matrix completion problem, where we observe a partial symmetric matrix A = (aij) for positions (i, j)

in a certain set of edges, and aim to construct a positive semi-definite completion of A. This problem

is extensively studied owing to its widespread applications in diverse fields such as probability, statistics,

systems engineering and geophysics; see, for example, Laurent (2009) and the references therein for an
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introduction to the topic. Statistical questions associated with such problems are relatively under-explored,

though we mention the recent work Waghmare and Panaretos (2022) that provides estimated completions

of covariance operators in settings where completions always exist. A distinct but related problem that has

received more attention in the statistics literature is low-rank matrix completion. In particular, significant

contributions (Candès and Recht, 2009; Candès and Tao, 2010; Recht, 2011) have been made in the realm

of convex optimization, where a low-rank matrix is recovered from partial observations after introducing a

nuclear norm penalty. In our work we make no low-rank assumptions and our main interest is in answering

the question of whether or not a positive semi-definite completion exists.

We now briefly outline our main contributions. In Section 2, we introduce a data-driven bootstrap test

for MCAR, detailed in Algorithm 1. We also state our main result (Theorem 1), that this procedure is

uniformly valid over expanding subsets of the null hypothesis, excluding distributions close to the boundary,

and uniformly powerful against alternatives separated from the null hypothesis. Additionally, we establish its

asymptotic validity over the entire null hypothesis in a specific example (Proposition 2). This test is based on

a numerical measure, R(ΣS), which quantifies the incompatibility of a collection of correlation matrices ΣS.

We define this measure in Section 3 and establish key properties, including a useful and interpretable dual

representation (Proposition 5). In Section 4, we shift our focus to the empirical estimation of this index and

analyse its concentration properties. Assuming non-singularity of the correlation matrices, ΣS ⪰ cI|S| for all

S ∈ S, we present an oracle test based on knowledge of c > 0, and we state a result on its validity and power

(Theorem 7). This result is crucial for the proof of Theorem 1. In Section 5 we analyse the performance

of our oracle test in various examples and show that its separation rate is near-minimax optimal in some

cases, while studying properties of the associated semi-definite programmes. In Section 6 we validate our

methodology in numerical experiments. Section 7 contains the proofs of our main results. The Appendix

contains background and auxiliary results.

We conclude the introduction with some notation that is used throughout the paper. In general, we will

denote covariance matrices by Ω and correlation matrices (or other suitably normalised covariance matrices)

by Σ. For d ∈ N, we write [d] := {1, · · · , d}, and indicate with |B| the cardinality of the set B. Given

a, b ≥ 0, we write a ≲ b to mean that there exists a universal constant C > 0 such that a ≤ Cb. We use a∧ b
for min{a, b}, and a ∨ b for max{a, b}. We will denote with 0d the null vector of dimension d, with 1d the

all-one vector, with ej the j-th element of the canonical basis of Rd, with Od1,d2 the zero matrix of dimension

d1 × d2, with Od := Od,d, and with Id the identity matrix of dimension d. We will omit the subscript with

the dimension d when it is clear from the context. For symmetric matrices A,B of dimension d, we write

A ⪰ 0 to mean that A is positive semi-definite, write A ⪰ B to mean that A − B ⪰ 0, write diag(A) to

indicate the vector whose elements coincide with the diagonal entries of the matrix A, and diag(v) for a

vector v = (v1, . . . , vd) to indicate a diagonal matrix with diagonal elements equal to vi. We will indicate

the trace of A with tr(A), the determinant with either |A| or det(A), and the minimum and maximum

eigenvalues of A with λmax(A) and λmin(A), respectively. We use ∥ · ∥p for the lp-norm of a vector. We will

use ∥ · ∥∗ for nuclear norm, or Schatten-1 norm of a matrix, ∥ · ∥2 for the spectral norm, and ∥ · ∥F for the

Frobenius norm. For random elements X,Y , we write X ⊥⊥ Y to mean that X and Y are independent. For

σ > 0, a random variable X with mean µ = E[X] is said to be σ-subgaussian if

E
[
eλ(X−µ)

]
≤ eσ

2λ2/2 for all λ ∈ R,
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while, for (ν, α) ∈ (0,∞)2, it is said to be (ν, α)-subexponential if

E
[
eλ(X−µ)

]
≤ e

ν2λ2

2 for all |λ| < 1

α
.

A random vector X in Rn is said to be σ-subgaussian if every one-dimensional projection, i.e. vTX with

v ∈ Rn and ∥v∥ = 1, is σ-subgaussian in the sense defined above.

2 Statistical setting and bootstrap test of MCAR

We aim to test X ⊥⊥ Ω by examining the collection of suitably normalised covariance matrices across different

missingness patterns, and we will see in the sequel (e.g. Section 5) that the structure of these patterns has a

strong influence of the complexity of the problem. Instead of assuming that we have access to i.i.d. copies

from X ◦Ω, it is convenient to condition on the realisations of Ω, so that the collection of patterns S and the

samples sizes (nS : S ∈ S) are fixed. This does not impose a significant constraint, and all the theoretical

results can be adapted to the unconditional model. We then assume that for each S ∈ S we have access to

an independent sample

XS,1, . . . , XS,nS

i.i.d.∼ PS

for some sample size nS and some distribution PS with mean µS , correlation matrix ΣS , vector of variances

σ2
S , and covariance matrix ΩS = diag1/2(σ2

S) ·ΣS · diag1/2(σ2
S). We write µ̂S , Σ̂S , σ̂

2
S and Ω̂S for the sample

mean, the sample correlation matrix, the vector of sample variances and the sample covariance matrix,

respectively, of XS,1, . . . , XS,nS
for each S ∈ S. Additionally, we write µ̂S = (µ̂S : S ∈ S), Σ̂S = (Σ̂S : S ∈ S),

σ̂2
S = (σ̂2

S : S ∈ S) and Ω̂S = (Ω̂S : S ∈ S) for the collections of these estimators.

We now propose a bootstrap test of MCAR that can be applied without any knowledge of unknown

parameters. This will be based on the incompatibility index R(·) ∈ [0, 1] defined in Section 3, which acts

on correlation matrices and characterises compatibility, in the sense that R(ΣS) = 0 if and only if ΣS is

compatible, and its regularised version Rz(·) defined in Equation (7). Algorithm 1, which is implemented

the R-package MCARtest (Berrett et al., 2022), tackles the testing problem H0 : R(ΣS) = 0 using as test

statistic the plug-in estimate R(Σ̂S), and is calibrated through a bootstrap procedure. As already outlined

in Section 1, rejection of H0 is sufficient to reject MCAR.

The intuition behind the procedure is as follows. From Proposition 5 in Section 3 we can write Σ̂S =

(1−R(Σ̂S))Q̂S+R(Σ̂S)Σ̂
′
S, where Q̂S can be thought as the closest compatible sequence of correlation matrices

to Σ̂S, and can be computed at the same time as the test statistic R(Σ̂S), and Σ̂′
S is an arbitrary sequence

of correlation matrices. If R(Σ̂S) ≥ 3/4, we reject the null hypothesis outright, as there is strong evidence

against it. Otherwise, we proceed by calibrating our test using a bootstrap procedure. We transform the

original data by calculating X̃S := Q̂
1/2
S Σ̂

−1/2
S diag−1/2(σ̂2

S)(XS − µ̂S) for all S ∈ S. This transformation

means that the sample correlation matrices of X̃S := (X̃S : S ∈ S) are given by Q̂S, which is compatible.

Fixing B ∈ N+, for each b ∈ [B] and S ∈ S we generate X̃
(b)
S as a nonparametric bootstrap sample from X̃S

and calculate the sample correlation matrix Σ̂S,b = SampleCorr(X̃
(b)
S ). Then, for each b ∈ [B] we compute

the corresponding test statistic Rĉ/2(Σ̂S,b : S ∈ S). These will serve as surrogates of the null, and will

be employed to generate a p-value of the form pR := (1 + B)−1(1 +
∑B
b=1 1{Rĉ/2(Σ̂S,b) ≥ R(Σ̂S)}). The
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Algorithm 1 MCAR bootstrap test checking compatibility of correlation matrices

1: Given data XS, discard all patterns S ∈ S such that nS ≤ |S|+ 1.

2: Compute Σ̂S = SampleCorrXS and ĉ = minS∈S λmin(Σ̂S).

3: Compute R(Σ̂S) and the dual decomposition Σ̂S = (1−R(Σ̂S))Q̂S +R(Σ̂S)Σ̂
′
S.

4: if R(Σ̂S) ≥ 3/4 then
5: return pR = 0.
6: else
7: For all S ∈ S, for all i ∈ [nS ] do X̃S,i := Q̂

1/2
S Σ̂

−1/2
S diag−1/2(σ̂2

S)(XS,i − µ̂S).
8: for b ∈ [B] do

9: For all S ∈ S, let X̃(b)
S = (X̃

(b)
S,i : i ∈ [nS ]) be a nonparametric bootstrap sample from X̃S .

10: Compute Σ̂S,b = SampleCorr X̃
(b)
S .

11: Compute Rĉ/2(Σ̂S,b).
12: end for
13: return pR := (1 +B)−1(1 +

∑B
b=1 1{Rĉ/2(Σ̂S,b) ≥ R(Σ̂S)}).

14: end if

reason why we are forced to use the regularised version Rĉ/2(·) at the bootstrap level instead of the standard

R(·), and why we treat the case R(Σ̂S) ≥ 3/4 separately, is that it is notably challenging to characterise

the spectrum of Q̂S. This approach might inflate the size of our test in general. However, this inflation

is vanishingly small since Rĉ/2(Σ̂S,1) | XS
P→ R(Σ̂S,1) | XS, as demonstrated, for instance, in the proof of

Proposition 2.

The theoretical properties of Algorithm 1 are based on analysing the concentration properties of the

plug-in estimator R(Σ̂S) and the bootstrap statistics Rĉ/2(Σ̂S,b), which require several technical insights.

These are developed in Section 4. In light of the results presented therein, we are able to prove that our

bootstrap test is uniformly valid over expanding subsets of the null, and uniformly powerful over alternatives

separated from the null. To this end, let

P̄S(0) := {PS ∈ PS : R(ΣS) = 0}.

For PS ∈ PS and ϵ > 0, define

Bϵ(PS) = {P ′
S ∈ PS : max

S∈S
∥ΣS − Σ′

S∥2 ≤ ϵ} and P̄S(0)
−ϵ = {PS ∈ P̄S(0) : Bϵ(PS) ⊆ P̄S(0)}.

Theorem 1. Suppose we observe XS,1, . . . , XS,nS

i.i.d.∼ PS for each S ∈ S independently, where each PS

is ν-subgaussian with mean µS. Denote by ΣS the collection of population correlation matrices and by

ΩS the collection of population covariance matrices, and assume that ΣS ⪰S cIS for c > 0. Let σ2
min :=

min
j∈[d]

min
S∈Sj

(ΩS)jj and define

Cα,c =
K1ν

4

cσ4
min

max
S∈S

√
|S|+ log(|S|/α)

nS
. (1)
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(i) Then, for a universal constant K1 > 0 chosen sufficiently large, for all α ∈ (0, 1), if Cα,2 ≤ 1, we have

sup
PS∈P̄S(0)

−Cα,2

PPS {pR ≤ α} ≤ α.

(ii) Moreover, if α ∈ (0, 1) and β ∈ (0, 1−α) are such that B ≥ 2(1−α)/α and C̃α,β ≤ 1/2, and if PS ∈ PS

is such that R(ΣS) > 2C̃α,β, then we have PPS {pR > α} ≤ β, where

C̃α,β = max

max
S∈S

K2ν
5

σ5
minc

3/2

√
log(nS) log(|S|/αβ){|S|+ log(|S|nS/αβ)}

nS
,

max
S∈S

K3ν
6

σ6
minc

2

{|S|+ log(|S|/αβ)} log2(|S|nS/αβ)
nS

, Cαβ,c

)
,

and K2,K3 > 0 are sufficiently large universal constants.

First, observe that the initial part of the result implies asymptotic validity across the entire null hypoth-

esis, except at its boundary. Additionally, compared to the oracle test given in Theorem 7 in Section 4, the

separation required to achieve uniform power includes just an extra logarithmic term in nS and |S|, being
of the order

C̃α,β ≲ max
S∈S

√
|S| log nS log(|S|/αβ)

nS
,

when c, σ2
min and ν2 are fixed. This, combined with Theorems 10 and 12, also demonstrates that our

bootstrap test is essentially minimax optimal up to logarithmic factors when S is either a d-cycle or a block

3-cycle.

Regarding the behaviour at the boundary of the null hypothesis, it is important to note that classical

bootstrap procedures can be inconsistent for certain parameter values on the boundary of the associated

parameter spaces (Andrews, 2000; Samworth, 2003; Cavaliere et al., 2017). While alternative approaches

like the m out of n bootstrap can restore consistency in these cases, they may still be outperformed by

the inconsistent standard bootstrap in practice. For example, this phenomenon is highlighted in Samworth

(2003) through an analysis of the parametric bootstrap in the context of the Hodges and Stein estimators.

As for the bootstrap test given in Algorithm 1, its asymptotic validity on the boundary crucially depends on

the geometrical properties of the null hypothesis, which are in turn induced by the structure of the collection

of missingness patterns S. While this is generally very complex, we can still demonstrate the asymptotic

validity of the bootstrap test over the entire null hypothesis in certain specific cases, such as for the d-cycle.

To this end, recall that for bivariate random vectors (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P with mean (ξ, η),

variances (σ2, τ2), and finite fourth moments, we have that
√
n(ρ̂ − ρ)

d→ N(0, γ2(P )) (Lehmann, 1999,

Example 5.4.3), where ρ and ρ̂ are Pearson correlation and its sample version, respectively. Here, the

definition of γ2(P ) is as follows: let (S)ij = σij with

σ11 = Var[(X − ξ)(Y − η)] = E
[
(X − ξ)2(Y − η)2 − ρ2σ2τ2

]
,

σ12 = σ21 = Cov
[
(X − ξ)(Y − η), (X − ξ)2

]
= E

[
(X − ξ)3(Y − η)− ρσ3τ

]
,

σ22 = Var(X − ξ)2 = E(X − ξ)4 − σ4,

8



σ13 = σ31 = Cov
[
(X − ξ)(Y − η), (Y − η)2

]
= E

[
(X − ξ)(Y − η)3

]
− ρστ3,

σ23 = σ32 = Cov
[
(X − ξ)2, (Y − η)2

]
= E

[
(X − ξ)2(Y − η)2

]
− σ2τ2,

σ33 = Var(Y − η)2 = E(Y − η)4 − τ4. (2)

Let f(u, v, w) = u/
√
vw, and define γ2(P ) = aTSa, where a = (∂f/∂u, ∂f/∂v, ∂f/∂w) evaluated at

u = ρστ, v = σ2, w = τ2.

Proposition 2. Consider a d-cycle, i.e. S = {{1, 2}, {2, 3}, . . . , {d, 1}}, and write ΣS := (Σ{1,2}, · · · ,Σ{d,1})

for the collection of 2× 2 correlation matrices with

Σj,j+1 =

(
1 cos θj

cos θj 1

)
,

where θj ∈ [0, π] for all j ∈ [d]. Let P{j,j+1} be the distribution of (Xj , Xj+1) | Ω = 1{j,j+1}, and suppose

P{j,j+1} has finite fourth moments for all j ∈ [d]. Assume that min{1 + cos θj , 1− cos θj} ≥ c for all j ∈ [d]

for a universal constant c ∈ (0, 1), and suppose there exists j ∈ [d] such that γ2(P{j,j+1}) > 0. For all

PS ∈ P̄S(0) and α < 1/2, we have

lim
nS→∞

lim
B→∞

PPS {pR ≤ α} ≤ α.

Furthermore, if PS ∈ ∂P̄S(0) := P̄S(0) \ ∪ϵ>0P̄S(0)
−ϵ, the probability of rejection tends exactly to α.

The condition γ2(Pj,j+1) > 0 ensures that R(Σ̂S) and Rĉ/2(Σ̂S,b) do not have a degenerate limit, and

holds for all sufficiently regular distributions. For instance, in the case of elliptical distributions, we have

γ2(P ) = (1 + κ)(1− ρ2)2 > 0 (see Theorem 5.1.6 in Muirhead (1982)), since ρ2 < 1 by assumption, and the

kurtosis κ is guaranteed to satisfy κ > −1 (Bentler and Berkane, 1986).

3 Measure of incompatibility for covariance matrices

In this section we develop our index R(·) of the incompatibility of population covariance matrices, which

will be defined as the optimal value of a semi-definite programme. Standardising the covariance matrices

is necessary to have a well-posed problem, and we choose to work with correlation matrices because this is

most natural from a statistical point of view. Other standardisation are possible, though, each leading to a

different measure of incompatibility, with different properties. In Appendix B we introduce another measure

of incompatibility based on a different standardisation, analyse its properties, and derive an oracle test of

MCAR based on its estimation from data. In order to define and study the properties of R(·), we must first

introduce some basic algebraic objects for collections of symmetric and positive semi-definite matrices. Our

key notation is collected in Table 1 below.

Crucially, we say that an element of P∗
S is compatible if and only if it is an element of P0,∗

S . It turns

out that we can characterise compatibility through the adjoint of the linear operator A defined in Table 1

above, which maps a symmetric matrix X into a collection of symmetric matrices indexed by S according to

(AX)S = (Xjj′)j,j′∈S for all S ∈ S.

9



Notation Definition Meaning

S A subset of the power set of [d] Set of all missingness patterns

Sj {S ∈ S : j ∈ S} Set of all patterns that contain j

Sjj′ {S ∈ S : j, j′ ∈ S} Set of all patterns that contain (j, j′)

M ≡ Md {X ∈ Rd×d : X = XT } Space of symmetric matrices

MS {(XS : S ∈ S) : XS ∈ M|S| for all S ∈ S} Space of collections of symmetric matrices

⟨X,Y ⟩ tr(XY ) for X,Y ∈ M Frobenius inner product

⟨XS, YS⟩S
∑
S∈S tr(XSYS) for XS, YS ∈ MS Sum of Frobenius inner products

P∗ {Σ ∈ M : Σ ⪰ 0} Cone of PSD matrices

P {Σ ∈ P∗ : diag(Σ) = Id} Set of correlation matrices

ΣS ⪰S 0 ΣS ⪰S 0 if and only if ΣS ⪰ 0 for all S ∈ S Loewner order for collections of matrices

P∗
S {ΣS ∈ MS : ΣS ⪰S 0} Set of collections of PSD matrices

PS {ΣS ∈ P∗
S : diag(ΣS) = I|S| for all S ∈ S} Set of collections of correlation matrices

A A : M → MS with (AX)S = (Xjj′)j,j′∈S Marginalisation operator on matrices

P0,∗
S {AΣ : Σ ∈ P∗} Set of compatible collections of PSD matrices

P0
S {AΣ : Σ ∈ P} Set of compatible collections of correlation

matrices

Y {diag(v) : v ∈ Rd and
∑d
j=1 vj = 0} Space of diagonal matrices with null trace

OS (O|S| : S ∈ S) Collection of zero matrices

IS (I|S| : S ∈ S) Collection of identity matrices

Table 1: Table of definitions commonly used in the main text.

Proposition 3. The adjoint operator A∗ : MS → M of A is given by

(A∗XS)jj′ =
∑
S∈S

1{j,j′∈S}(XS)jj′ =
∑
S∈Sjj′

(XS)jj′ ,

where we recall that Sjj′ = {S ∈ S : j, j′ ∈ S} = Sj ∩ Sj′ .

Now, the following proposition fully characterises compatibility in terms of the non-negativity of a col-

lection of linear functionals.

Proposition 4. For ΣS ∈ P∗
S we have ΣS ∈ P0,∗

S if and only if

⟨XS,ΣS⟩S ≥ 0 for all XS ∈ MS satisfying A∗XS ⪰ 0.

The proof can be found in Section 7. This is an extension of well-known characterisation of the feasibility

of positive semi-definite matrix completion (e.g. Laurent, 2009). Indeed, when ΣS is consistent, we can show

that ⟨XS,ΣS⟩S = ⟨A∗XS,Σ⟩, where Σ is the d × d symmetric matrix with Σjj′ = (ΣS)jj′ for all S ∈ Sjj′ , if
Sjj′ ̸= ∅, and Σjj′ = 0 if Sjj′ = ∅. Here Σ can be thought of as a partial matrix that is padded with zeros

in unobserved positions. Since A∗XS is also zero in these positions, the value of Σ there is arbitrary. Now

our characterisation reduces to checking that ⟨A∗XS,Σ⟩ ≥ 0 for all XS ∈ MS satisfying A∗XS ⪰ 0, which

is equivalent to checking ⟨X,Σ⟩ ≥ 0 for all X ∈ M with Xjj′ = 0 if Sjj′ = ∅, which coincides with (4) in

Laurent (2009).
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Proposition 4 provides a characterisation of compatibility, but in order to assess the significance of depar-

tures from the null hypothesis and thus to define hypothesis tests, we will need a numerical measure of incom-

patibility. A natural way to do this is to minimise ⟨XS,ΣS⟩S over a subset of {XS ∈ MS : A∗XS ⪰ 0} that still

characterises compatibility, but gives finite minimal values. First, observe that checking the compatibility of

covariance matrices is equivalent to checking the consistency of the variances σ2
S = diag(Cov(XS |Ω = 1S))

for S ∈ S, and the compatibility of the correlation matrices Corr(XS |Ω = 1S) for S ∈ S. Here, we will focus

on the latter issue, and postpone the discussion of testing the consistency of variances to Section 6. This is

because this problem essentially reduces to testing the equality of variances, which is well understood in the

statistical literature (Brown and Forsythe, 1974; Gastwirth et al., 2009). Now, whenever ΣS is a collection

of correlation matrices we define

R(ΣS) := sup

{
− 1

d
⟨ΣS, XS⟩S : XS +X0

S ⪰S 0, A∗XS + Y ⪰ 0 for some Y ∈ Y
}

= 1− 1

d
inf{⟨ΣS, YS⟩S : YS ⪰S 0, A∗YS + Y ⪰ Id for some Y ∈ Y} (3)

where X0
S = (X0

S : S ∈ S) with X0
S = diag (1/ |Sj | : j ∈ S), and where Y is the set of diagonal d × d

matrices with trace equal to zero. We refer to R(·) as an index of incompatibility, borrowing the terminology

from Berrett and Samworth (2023). The objective function of this optimisation problem is a one-to-one

mapping of the linear functional appearing in our characterisation of compatibility. Moreover, by choosing

Y = O and noting that X0
S ≻S 0, we can see that for any XS that satisfies A∗XS ⪰ 0, the collection

ϵXS is feasible for ϵ > 0 sufficiently small. Thus, by Proposition 4 we have that R(ΣS) > 0 whenever

ΣS is incompatible. On the other hand, when ΣS = AΣ is compatible and (XS, Y ) is feasible we have

⟨ΣS, XS⟩S = ⟨Σ, A∗XS⟩ = ⟨Σ, A∗XS + Y ⟩ ≥ 0, where the second equality holds because Σ has a constant

diagonal. Combining this with the observation that XS = OS is feasible, we see that R(ΣS) = 0 when ΣS is

compatible.

In the above argument we did not use the specific form of the lower bound XS ⪰S −X0
S anywhere, and

it would also have been possible to optimise over the restricted set of XS that are feasible with Y = O. The

specific choice of the feasible set in the definition of R(ΣS) was made because it leads to an interpretable

dual formulation. While there exist semi-definite programs for which strong duality does not hold, Slater’s

condition is satisfied in our problem, so we do not encounter such issues (see Appendix C for an introduction

to the theory of semi-definite programming). This is formalised in the result below.

Proposition 5. For ΣS ∈ PS we have

R(ΣS) = inf{ϵ ∈ [0, 1] : ΣS ∈ (1− ϵ)P0
S + ϵPS}

= 1− 1

d
sup{tr(Σ) : AΣ ⪯S ΣS, Σ11 = . . . = Σdd, Σ ⪰ 0}. (4)

This result shows that our measure of incompatibility R(ΣS) can be interpreted as the smallest amount

of perturbation ϵ that a compatible collection of correlation matrices must be corrupted by to result in the

input collection ΣS. It is immediate from this representation that R(ΣS) takes values in [0, 1]. Moreover,

it follows from Slater’s condition that the optimal value of the dual problem is attained. Thus, writing
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λ∗ = 1−R(ΣS), we can write ΣS as

ΣS = λ∗AΣ+ (1− λ∗)Σ′
S, (5)

where Σ ∈ P and Σ′
S ∈ PS. By the maximality of λ∗ = 1 − R(ΣS), it must be the case that R(Σ′

S) = 1.

Indeed, if this were not the case, it would be possible to write Σ′
S = λ′AΣ′ + (1− λ′)Σ′′

S for some λ′ ∈ (0, 1],

which would contradict the fact that λ∗ is optimal. This argument shows that, whenever S is such that there

exists an incompatible collection ΣS, the maximal value R(ΣS) = 1 is attainable, so that the quantity R(ΣS)

is on an interpretable scale between compatibility at one extreme and maximal incompatibility at the other.

We remark that this dual interpretation of R(·) aligns with a similar representation of the incompatiblity

of collections of distributions defined by Berrett and Samworth (2023). In this earlier work it is shown that the

incompatibility of collections of distributions can be understood through linear programming techniques. Our

work here, however, shows that we must consider the more complex problem of semi-definite programming to

understand the incompatibility of collections of covariance matrices. Despite this additional complexity, since

Slater’s condition is satisfied for our problem, the primal-dual interior point method has a computational

complexity which is polynomial in the number of constraints and the dimension of the variable square matrix

(Section 6.4.1. of Nesterov and Nemirovskii (1994), Section 5.7. of Vandenberghe and Boyd (1996)). This

ensures that R(ΣS) can be always computed efficiently without additional assumptions.

We conclude this section with some basic properties of R(·) that will be used in later proofs.

Proposition 6. The following hold:

(i) R(·) is convex.

(ii) R(·) is continuous.

(iii) Suppose S ⊆ S′ and ΣS ⊆S ΣS′ , where the inclusion ⊆S means that every correlation matrix in ΣS is

also in ΣS′ . Then R(ΣS) ≤ R(ΣS′).

It is interesting to observe that property (iii) says that R is monotone with respect to the inclusion

operator, so that additional information can only make a collection less compatible.

4 Concentration bound and an oracle test

Having introduced our population-level measure of incompatibility, in this section we analyse the concen-

tration properties of the plug-in estimator R(Σ̂S). This will give us tools that enable us to prove theoretical

guarantees (Theorem 1) for the bootstrap procedures defined in Section 2. Furthermore, it will lead natu-

rally to the definition of the oracle test defined in Theorem 7. Now, the analysis of R(Σ̂S) is challenging,

as it is defined as the optimal value of a semi-definite program with an unbounded feasible set. In fact,

without further assumptions, it is not possible to restrict attention to a compact feasible set. On the other

hand, most statistical techniques for the analysis of suprema of empirical processes require feasible sets to

be totally bounded so that, for example, covering arguments can be applied.

Fortunately, under the assumption that ΣS ≻S 0, our dual problem (4) is strictly feasible and hence

Slater’s condition implies that the optimal value is attained in the primal problem (3). This assumption is
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reasonable in many areas of application, and similar assumptions of invertibility have been used frequently

in the literature (Meinshausen and Bühlmann, 2006; Cai et al., 2011). In fact, if we assume the stronger

condition that ΣS ⪰S cIS for some c > 0, we will see that the optimal value is always attained in a compact

set whose size depends on c. Indeed, the strict feasibility of the dual problem (4) implies that there exists

XS ∈ MS such that XS +X0
S ⪰S 0 and R(ΣS) = −d−1⟨XS,ΣS⟩S. This in turn implies that

∑
S∈S

∥XS +X0
S∥∗ = ⟨XS +X0

S , IS⟩S ≤ 1

c
⟨XS +X0

S ,ΣS⟩S =
d

c
{1−R(ΣS)} ≤ d

c
,

so that we have a bound on the sum of the nuclear norms of the matrices in the sequence XS + X0
S . In

finding the optimal value of the primal problem (3), then, we may restrict attention to

Fc :=
{
XS ∈ MS : XS +X0

S ⪰S 0,
∑
S∈S

∥XS +X0
S∥∗ ≤ d/c,A∗XS + Y ⪰ 0 for some Y ∈ Y

}
, (6)

which is compact. Formally, defining the regularised version of R(·) as

Rz(ΣS) := sup
{
−d−1⟨XS,ΣS⟩S : XS ∈ Fz

}
for z ≤ 1, (7)

we have just shown that Rc(ΣS) = R(ΣS) whenever ΣS ⪰S cIS. This regularised index of incompatibility is

used to compute the bootstrap statistic Rĉ/2(Σ̂S,1) in Algorithm 1, and is such that Rz1(ΣS) ≥ Rz2(ΣS) if

z2 ≥ z1.

Before moving on to describe how to construct a statistical test under this new assumption, we give a

brief discussion of the norm on MS defined by

∥XS∥∗,S :=
∑
S∈S

∥XS∥∗,

which reduces to
∑
S∈S tr(XS) in case that XS ⪰S 0. For each S ∈ S, the nuclear norm ∥XS∥∗ can be thought

of as the ℓ1 norm applied to the eigenvalues of XS . As these are then summed to give ∥XS∥∗,S, we see that

∥ · ∥∗,S can be thought of as an ℓ1 norm on MS. It is easy to see that the dual norm of ∥ · ∥∗,S with respect

to the inner product ⟨·, ·⟩S is

∥XS∥2,S := max
S∈S

∥XS∥2,

where ∥ · ∥2 is the usual spectral norm of a matrix. This follows after writing the sequence of matrices in

block-diagonal form, and allows us to derive the following generalisation of Holder’s inequality in the space

of matrix collections,

|⟨XS, YS⟩S| ≤ ∥XS∥∗,S∥YS∥2,S =
∑
S∈S

∥YS∥∗ ·max
S∈S

∥XS∥2. (8)

This inequality will be used in the proof of the following result, which provides valid critical values for the

test statistic R(Σ̂S) and gives conditions under which the resulting test has large power.

Theorem 7. Suppose that the assumptions of Theorem 1 hold, and recall the definition of Cα,c ≡ Cα

from (1). Then, for a universal constants K1 > 0 chosen sufficiently large, for all α ∈ (0, 1), the test that

rejects H0 : R(ΣS) = 0 if and only if R(Σ̂S) ≥ Cα has Type I error bounded by α. Moreover, for β ∈ (0, 1−α),

13



if R(ΣS) > Cα + Cβ, then P{R(Σ̂S) ≤ Cα} ≤ β.

In proving this result we give concentration inequalities for the random quantities R(Σ̂S). The analysis

of R(Σ̂S) is crucially based on the fact that, under H0 and in light of the inequality (8), we can control the

oscillation |R(Σ̂S)−R(ΣS)| using maxS∈S ∥Σ̂S −ΣS∥2, where the ΣS are the Pearson population correlation

matrices and Σ̂S are the corresponding Pearson sample correlation matrices. To this end, we derive a tail

bound for the spectral norm ∥Σ̂ − Σ∥2, where Σ is the population correlation matrix and Σ̂ is the sample

correlation matrix of complete data, which may be of independent interest. This can be found in Section 7.

As well as providing a critical value for our test, Theorem 7 also gives upper bounds on the minimax

separation rate for this testing problem. When c > 0, σ2
min and ν > 0 are fixed, our analysis gives an upper

bound on the minimax rate of the order

Cα ≲ max
S∈S

√
|S|+ log(|S|/α)

nS
.

whenever nS ≳ |S| for all S ∈ S. This is our main regime of interest, and we see in our examples in Section 5

below that reliable testing is only possible when sample sizes are large compared with dimensions, up to

logarithmic factors.

We conclude this section by illustrating the behaviour of this bound in certain examples where the

expression for Cα can be simplified. The corresponding upper bounds on the minimax separation rate will

be complemented by lower bounds in Section 5 to follow.

Example 1. In the d-cycle example, with d ≥ 3 and S = {{1, 2}, {2, 3}, . . . , {d − 1, d}, {d, 1}}, we have

|S| = 2 for all S ∈ S and |S| = d so that

Cα ≲ max
S∈S

√
log(d/α)

nS
=

√√√√ log(d/α)

min
S∈S

nS
.

Combined with Theorem 10 below, this reveals that, in this specific example, testing the compatibility of the

correlation matrices is no harder than testing the consistency of the variances, up to constant factors.

Example 2. Consider the block-3-cycle S = {[2d], [d] ∪ ([3d] \ [2d]), [3d] \ [d]}, with d ≥ 1. Then

Cα ≲ max
S∈S

√
d+ log(1/α)

nS
=

√√√√d+ log(1/α)

min
S∈S

nS
.

We prove the minimax optimality, up to logarithmic factors, of this rate in Theorem 12. In particular, this

shows that the optimal separation rates for this testing problem are not significantly faster than the optimal

rates for the estimation of ΣS with operator norm loss.

Example 3. Consider S = Pow([d]), where Pow(·) stands for the power set. This corresponds to the case

where we observe all possible missingness patterns from a dataset of dimension d. In this case, we have
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maxS∈S |S| = d and log |S| = d log 2, so that

Cα ≲ max
S∈S

√
d+ log(1/α)

nS
=

√√√√d+ log(1/α)

min
S∈S

nS
.

This shows that Cα is at worse of the order
√
d/n.

5 Optimality and examples

In this section, we assess the optimality of the oracle test given in Theorem 7, in the settings of Examples 1

and 2, i.e. when S = {{1, 2}, {2, 3}, . . . , {d − 1, d}, {d, 1}}, the d-cycle, and when S = {[2d], [d] ∪ ([3d] \
[2d]), [3d] \ [d]}, the block 3-cycle. These collections S provide examples where our methodology is provably

near rate-optimal. For a given dimension d, these two examples further demonstrate the range of optimal

rates that can arise for different collections S. Assuming for simplicity that nS = n for all S ∈ S, we will

see that the optimal rate in the d-cycle case is {log(d)/n}1/2, while for the block 3-cycle it is (d/n)1/2 up to

logarithmic factors. Together, these results show that the structure of S can have a significant effect on the

difficulty of the problem.

We will characterise the optimality of a testing procedure using the minimax framework, where we aim

at finding the smallest separation between the null and the alternative hypotheses such that there exists a

test that can distinguish between H0 and H1 up to a given level of error. More precisely, given ρ > 0, we

are interested in testing

H0 : R(ΣS) = 0 vs. H1 : R(ΣS) > ρ,

and our goal is to find the smallest value of ρ such that there exists a test with uniform error control. Write

Ψ ≡ ΨS(nS) for the set of all tests, that is measurable functions of the data (XS,i : S ∈ S, i ∈ [nS ]) taking

values in {0, 1}. Recall that P̄S(0) denotes the set of all collections of distributions on (RS : S ∈ S) such

that the associated correlation matrices satisfy R(ΣS) = 0, and write PS(ρ) for the set of all collections of

distributions on (RS : S ∈ S) such that the associated correlation matrices satisfy R(ΣS) > ρ. Given a

collection of distributions PS = (PS : S ∈ S) on (RS : S ∈ S) and a collection of sample sizes nS = (nS : S ∈
S), we write P⊗nS

S for the distribution of the entire dataset (XS,i : S ∈ S, i ∈ [nS ]) when each observation

is independent and XS,i ∼ PS for each i ∈ [nS ] and S ∈ S. For a fixed η ∈ (0, 1) we may then define the

minimax separation to be

ρ∗ ≡ ρ∗S(nS, η) := inf

{
ρ > 0 : inf

φ∈Ψ

(
sup

PS,0∈P̄S(0)

P⊗nS
S,0 (φ = 1) + sup

PS,1∈PS(ρ)

P⊗nS
S,1 (φ = 0)

)
≤ η

}
.

In our analysis we take η = 3/4, but this is an arbitrary choice and any constant value in (0, 1) would

result in the same qualitative behaviour. In common with previous work on minimax testing, we prove lower

bounds on ρ∗ by constructing suitable (prior) distributions µ0, µ1 whose support is contained in P̄S(0),PS(ρ),

respectively. In our proofs it will be sufficient to consider mean-zero Gaussian distributions with suitable

priors over their covariance matrices. Having chosen these priors we can bound the minimal error probability
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by writing

sup
PS,0∈P̄S(0)

P⊗nS
S,0 (φ = 1) + sup

PS,1∈PS(ρ)

P⊗nS
S,1 (φ = 0) ≥ Eµ0

P⊗nS
S,0 (φ = 1) + Eµ1

P⊗nS
S,1 (φ = 0)

≥ 1− TV
(
Eµ0P

⊗nS
S,0 ,Eµ1P

⊗nS
S,1

)
,

where Eµi
P⊗nS
S,i denotes the mixture distribution of the dataset resulting from generating PS,i ∼ µi then,

conditionally on PS,i, generating the data. Then, the idea behind this method of finding a lower bound on

ρ∗ is to find priors µ0, µ1 with the largest separation possible such that no test can successfully distinguish

between Eµ0
P⊗nS
S,0 and Eµ1

P⊗nS
S,1 .

5.1 Cycles

Recall that we refer to S as a d-cycle when S = Sd := {{1, 2}, . . . , {d, 1}}. In this subsection, additions in

subscripts of the form (j, j + 1) for j ∈ [d] are intended modulo d, where d in the size of the cycle, so that

(0, 1) and (d, d+1) are equivalent to (d, 1). We also write ΣSd := (Σ{1,2}, · · · ,Σ{d,1}) for a collection of 2×2

correlation matrices with

Σj,j+1 =

(
1 cos θj

cos θj 1

)
,

and θj ∈ [0, π] for all j ∈ [d].

Now, recall that Theorem 7 implies an upper bound on the minimax separation of the form ρ∗ ≲
√
log d/n.

While it is straightforward to show a lower bound of ρ∗ ≳ 1/
√
n using a standard Le Cam two-point argument,

matching the logarithmic dependence on d in the numerator is technically challenging. Nonetheless, we will

argue that
√
log d/n is the optimal rate of convergence in the combined problem where we test both the

compatibility of the correlation matrices and the consistency of the variances.

To this end, we now define an analogous index of inconsistency for the collection of variances. Writing

σ2
S = (σ2

S : S ∈ S) for the collection of individual variances, we fix our units of measurement such that

āvj(σ
2
S) := |Sj |−1

∑
S∈Sj

σ2
S,j = 1,

for all j ∈ [d], where σ2
S,j is the j-th element of σ2

S . This is a natural constraint, analogous to the standardi-

sation of variables in complete-data problems, that does not remove information that may be present in the

individual variances. For such σ2
S , define

V (σ2
S) := 1− min

j∈[d]
min
S∈Sj

σ2
S,j = max

j∈[d]
max
S∈Sj

(
1− σ2

S,j

)
.

Under the hypothesis āvj(σ
2
S) = 1 for all j ∈ [d], it is clear that V (σ2

S) = 0 if and only if σ2
S,j = 1 for all

j ∈ [d], S ∈ Sj . On the other hand, we have V (σ2
S) > 0, if and only if there exists at least one variance

strictly less than 1. It is clear from the definition that V is bounded by one, and that this extreme value is

attainable when S is non-trivial and there exists j such σ2
S,j = 0 for some S ∈ Sj . The following result gives

a dual representation for V (σ2
S), providing justification for our specific measure of inconsistency.
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Proposition 8. If āvj(σ
2
S) = 1 for all j ∈ [d], then

V (σ2
S) = inf

{
ϵ ∈ [0, 1] : σ2

S = (1− ϵ)AV 1d + ϵσ′2
S with āvj(σ

′2
S ) = 1 for all j ∈ [d]

}
,

where (AV σ
2)S = (σ2

k)k∈S.

This result gives a dual representation for V (σ2
S), which is analogous to Proposition 5 and leads to a similar

interpretation, based on the idea of finding the smallest perturbation to make the collection consistent.

We now characterise the optimal rate of convergence in the combined problem where we test both the

compatibility of the correlation matrices and the consistency of the variances. Together, the following results

show that the oracle test based on the plug-in estimator R(Σ̂S) + V (σ̂2
S) is optimal up to constant factors,

and further imply that testing the consistency of the variances captures the essential statistical difficulty of

the problem in the case of a d-cycle.

Theorem 9. Suppose that the assumptions of Theorem 1 hold, and further assume that the sequence of

variances σ2
S satisfies āvj(σ

2
S) = 1 for all j ∈ [d]. Define C

(R+V )
α = max{2Cα/2, C

(V )
α }, with Cα ≡ Cα,c as

in (1) and

C(V )
α = K2ν

2

√
log
(∑

S∈S |S|/α
)

minS∈S nS
,

for a universal constant K2 > 0. Then, for K1,K2 > 0 chosen sufficiently large, for all α ∈ (0, 1), if

C
(R+V )
α ≤ min{2, 16ν2}, the test that rejects H0 : R(ΣS) + V (σ2

S) = 0 if and only if R(Σ̂S) + V (σ̂2
S) ≥

C
(R+V )
α has Type I error bounded by α. Moreover, for all β ∈ (0, 1 − α), if C

(R+V )
β ≤ min{2, 16ν2} and

R(ΣS) + V (σ2
S) > C

(R+V )
α + C

(R+V )
β , then P{R(Σ̂S) + V (σ̂2

S) ≤ C
(R+V )
α } ≤ β.

Theorem 10. Let S = Sd for d ≥ 3, with sample sizes nS = (n1, . . . , nd), and consider testing

H ′
0 : R(ΣS) + V (σ2

S) = 0 vs. H ′
1 : R(ΣS) + V (σ2

S) > ρ,

for ρ > 0. Call ρ∗R+V the minimax separation of this testing problem. There exists a universal constant

c1 > 0 such that

ρ∗R+V ≥ c1

√
log d

minj∈[d] nj
.

Furthermore, we can give a relatively explicit expression for R(·) for a general d-cycle.

Proposition 11. Let Σ be the optimum solution to the dual problem (4), and let φ∗ = (φ∗
1, . . . , φ

∗
d) be such

that Σj,j+1 = cosφ∗
j for each j ∈ [d]. Then:

(i) R(ΣSd) = |ρj − (1−R(ΣSd)) cosφ
∗
j |, for all j ∈ [d];

(ii) φ∗ = (φ∗
1, . . . , φ

∗
d) is unique, and φ∗(θ1, . . . , θd) is continuous for varying (θ1, . . . , θd) ∈ [0, π]d;

(iii) if θ1 = maxj∈[d] θj, with θ2, . . . , θd ≤ π/2, then

1−R(ΣSd) =
1− ϵj cos θj
1− ϵj cosφ∗

j

, for all j ∈ [d],

17



where ϵd = (ϵ1, . . . , ϵd) = (−1,+1d−1). Also, φ∗
1 =

∑d
j=2 φ

∗
j .

Observe that part (ii) only says that the entries of Σ corresponding to the cycle pattern are unique,

not the whole Σ itself. Indeed, given the unique optimal φ∗, there may exist infinitely many positive semi-

definite completions. In fact, if A is a partial symmetric matrix admitting a positive semi-definite completion,

then there exists a unique positive semi-definite completion with maximum determinant (Grone et al., 1984,

Theorem 2). For a general sequence of angles (θ1, . . . , θd), it is sufficient to use the transformation given in

Proposition 19 in Appendix A to reduce to the case where at most one angle is larger than π/2, choose ϵd

as outlined above, and perform the inverse transformation to obtain the signs for the original (θ1, . . . , θd).

As an immediate corollary of this, it is easy to see that, under the same set of hypotheses, we have

1−R(ΣSd) =
1 + cos θ1
1 + cosφ∗

1

,

where φ∗
1 is the solution of

φ∗
1 =

∑d
j=2 φ

∗
j

cosφ∗
j = 1− 1−cos θj

1+cos θ1
(1 + cosφ∗

1), for all j ∈ {2, . . . , d}.

For further properties of R(·) in the case of a d-cycle, we refer the reader to Appendix A.

5.2 Block cycles

So far, we have studied with particular care the case of a d-cycle, which is a relatively simple high-dimensional

setting, since it is a collection of d two-dimensional distributions. We now describe an evolution of this setting,

where we consider a block-matrix version of the 3-cycle. In this case the number of variables per missingness

pattern is large and we will see that the minimax separation rates are correspondingly much larger than in

the d-cycle, though the number of variables is of the same order.

Theorem 12. Let S = {[2d], [d] ∪ ([3d] \ [2d]), [3d] \ [d]} for some d ≥ 1. Writing nS = (n1, n2, n3) for the

sample sizes within each pattern, there exists a universal constant c1 > 0 such that

ρ∗ ≥ c1

√
d

(n1 ∧ n2) log4(ed)

whenever n1 ∧ n2 ≥ d/2.

This result shows that, up to logarithmic factors in d, the minimax separation rates for this testing

problem are the same as the minimax estimation rates for estimating ΣS in the operator norm distance. This

is related to the fact that R(ΣS) is a non-smooth functional of ΣS. Indeed, the following result shows that

we can construct examples of ΣS such that R(ΣS) can be bounded below using the function x 7→ max(0, x);

see below for more discussion of the relevant literature.
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Proposition 13. Consider the set of patterns S = {[2d], [d] ∪ ([3d] \ [2d]), [3d] \ [d]} for some d ≥ 1, and

suppose that

ΣS =

{(
Id P

PT Id

)
,

(
Id −P

−PT Id

)
,

(
Id βId

βId Id

)}
,

for some P ∈ Rd×d such that ∥P∥2 ≤ 1 and some β ∈ [0, 1]. Then:

(i) R(ΣS) = 0 if and only if ∥P∥22 ≤ 1−β
2 ,

(ii) R(ΣS) ≥ 3
4d

∑d
j=1(σ

2
j (P )−

1−β
2 )+, where σj(P ) is the j-th singular value of P .

This shows that, for ΣS of the form above, we can relate our testing problem to the problem of testing

whether the vector of squared singular values of P belongs to the orthant (−∞, (1− β)/2]d, or is separated

from it in the ℓ1 distance. In a Gaussian location model a similar problem, measuring separation with the

ℓ2 distance, was considered by Blanchard et al. (2018), and part of our lower bound construction is inspired

by this work. However, the consideration of singular values of matrices rather than Gaussian means means

that new technical tools are required. In this regard, the techniques of Thépaut and Verzelen (2024), who

consider the estimation of quantities of the form
∑d
j=1 σj(P )

q for q > 0, are useful. We also mention that

such problem are related to the estimation of ℓ1 distances, for which good references include Cai and Low

(2011) and Jiao et al. (2016).

6 Simulations

In this section, we empirically validate the performance of the bootstrap test described in Algorithm 1. To

also detect departures from the null hypothesis caused by inconsistencies in either the means or variances, we

introduce two separate bootstrap procedures addressing these aspects individually. Specifically, Algorithm

2, which provides the p-value pM , is designed to detect inconsistencies in the collection of means µS, while

Algorithm 3 returns the p-value pV , focusing on inconsistencies in the variances σ2
S . To create a more

comprehensive test, we propose an omnibus procedure that combines these three p-values using a Bonferroni

correction, which consists in rejecting the null whenever min{pR, pV , pM} < α/3. Although alternative

methods for combining p-values, such as Fisher’s method (Mosteller and Fisher, 1948), could be considered,

we chose this approach for its simplicity and its better control of the Type-I error. Furthermore, there

are various alternative approaches for measuring inconsistency in means and variances, but we chose these

because they align with the spirit of Algorithm 1. Additionally, this is a relatively classical problem since

it reduces to testing the equality of means and variances. Consequently, alternative methods might achieve

better practical performance. However, this is beyond the scope of our work, as the real novelty lies in

addressing the more challenging problem of testing the compatibility of correlation matrices.

Will will compare Algorithm 1 (represented by the purple line in the plots) and the omnibus approach

(represented by the blue line in the plots) with Little’s test (Little, 1988). Little’s test can be applied when

all pairs of variables are observed together, so that the EM algorithm (Dempster et al., 1977) can be applied

to find estimators µ̂ and Λ̂ of the mean and covariance matrix of the data under the null hypothesis of

MCAR. Little’s test is a generalised likelihood ratio test whose validity is based on the assumption that the
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data (XS,i : S ∈ S, i ∈ [nS ]) are Gaussian. Define

d2µ =
∑
S∈S

nS(X̄S − µ̂|S)Λ
−1
|S (X̄S − µ̂|S),

d2cov =
∑
S∈S

nS [tr(Ω̂SΛ̂
−1
|S )− |S| − log |Ω̂S |+ log |Λ̂|S |],

and

d2aug = d2µ + d2cov.

Then, under MCAR, d2aug converges in law to a χ2-distribution with

f =
∑
S∈S

1

2
|S|(|S|+ 3)− 1

2
d(d+ 3),

degrees of freedom by Wilks’ theorem. Based on these asymptotic results, Little’s test rejects MCAR if and

only if d2aug > χ2
f (1−α), where χ2

f (1−α) is such that P{W ≥ χ2
f (1−α)} = α, and whereW is χ2-distributed

with f degrees of freedom. Using similar asymptotics, one can define a test based on d2cov, which ignores the

means and only considers the partial covariance matrices, and another one based only on d2µ, which discards

the collection of covariance matrices and makes use of the means only. For the test based on d2µ we will

use the R-function mcar test from the R-package naniar (Tierney and Cook, 2023), while the other two

tests based on d2aug and d2cov can be found in the R-package MCARtest (Berrett et al., 2022) under the name

little test. In the following subsections, we will compare our procedures with Little’s test based on d2µ

(represented by the green line in the plots) and d2aug (represented by the black line in the plots). We will also

include a combined approach (represented by the orange line in the plots), which checks the compatibility

of the covariance matrices using min{pR, pV } but checks the consistency of the means using d2µ instead of

Algorithm 2. The p-values are again combined using a Bonferroni correction. Section 6.1 is focused on the

case where S is a d-cycle, which is the best-studied theoretical setting we considered in the paper, while

Section 6.2 is closer to real-world data applications.

Algorithm 2 Means only: MCAR bootstrap test checking consistency of means

1: Given data XS, discard all patterns S ∈ S such that nS ≤ 10.
2: Compute µ̂S = SampleMeanXS, i.e. µ̂S,j = n−1

S

∑
i∈nS

XS,ij for all S ∈ S and j ∈ S.

3: Compute M(µ̂S) = maxS∈S ∥µ̂S − µ̂|S∥1/maxS∈S |S|, where (µ̂)j = µ̂j = |Sj |−1
∑
S∈Sj µ̂S,j .

4: Rotate the original data XS, i.e. for all S ∈ S, for all i ∈ [nS ] do X̃S,i = XS,i − µ̂S + µ̂|S .
5: for b ∈ [B] do

6: For all S ∈ S, let X̃(b)
S = (X̃

(b)
S,i : i ∈ [nS ]) be a nonparametric bootstrap sample from X̃S .

7: Compute µ̂S,b = SampleMeanX
(b)
S and M(µ̂S,b).

8: end for
9: return pM := (1 +B)−1(1 +

∑B
b=1 1{M(µ̂S,b) ≥M(µ̂S)}).
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Algorithm 3 Variance only: MCAR bootstrap test checking consistency of variances

1: Given data XS, discard all patterns S ∈ S such that nS ≤ 10.
2: Compute σ̂2

S = SampleVarXS, i.e. σ̂
2
S,j = n−1

S

∑
i∈nS

X2
S,ij − µ̂2

S,j for all S ∈ S and j ∈ S.

3: Rescale the data such that |Sj |−1
∑
S∈Sj σ̂

2
S,j = 1 for all j ∈ [d].

4: Compute V (σ̂2
S) = 1−minS∈S minj∈S σ̂

2
S,j .

5: Rotate the original data XS, i.e. for all S ∈ S, for all i ∈ [nS ] do X̃S,i = diag(σ̂−1
S )XS,i.

6: for b ∈ [B] do

7: For all S ∈ S, let X̃(b)
S = (X̃

(b)
S,i : i ∈ [nS ]) be a nonparametric bootstrap sample from X̃S .

8: Compute σ̂2
S,b = SampleVar X̃S,b and rescale the data such that |Sj |−1

∑
S∈Sj σ̂

2
S,b,j = 1 for all j ∈ [d].

9: Compute V (σ̂2
S,b).

10: end for
11: return pV := (1 +B)−1(1 +

∑B
b=1 1{V (σ̂2

S,b) ≥ V (σ̂2
S)}).

6.1 Correlation matrices and simulations for d-cycles

We compare Algorithm 1 with Little’s procedures in the settings given in Theorem 10, namely in the case

of a d-cycle. For our first settings, we set nS = (nS)S∈S = (200, . . . , 200), and simulate X{j,j+1},i
i.i.d.∼

N(02,Σ{j,j+1}) for i ∈ [200] and j ∈ [d], where

ΣSd =

{(
1 cos θ1

cos θ1 1

)
, . . . ,

(
1 cos θd

cos θd 1

)}
,

for certain values of θ1, . . . , θd ∈ [0, π]. This makes sense only for d = 3, while for d ≥ 4 there exists at least

one pair of variables that are never observed together, making the EM algorithm to estimate Λ̂ inapplicable.

As for the case d = 3, in Figure 2 we set B = 99 and α = 0.05, and we vary θ1 ∈ [θ2 + θ3, (θ2 + θ3 + π)/2],

with (θ2, θ3) equal to (π/3, π/6). We repeat the experiment H = 500 times, and report the average decision.

The simulation results depicted in Figure 2 show that for d = 3, both the omnibus and combined

procedures perform similarly to Little’s test based on d2aug, though the Type I error of Little’s test is slightly

inflated. This outcome supports a conjecture in Little (1988), where it is suggested that even under normality,

the asymptotic null distribution of d2aug is unlikely to be reliable unless the sample size is large. Notably,

Algorithm 1 demonstrates the highest power, which is not surprising since it is specifically designed to detect

incompatible correlation matrices. As expected, the test based on d2µ shows no power, as it is only sensitive

to inconsistencies in the means, which are consistent in this particular scenario. For higher dimensions

(d ≥ 4), Little’s test cannot be applied, while our test remains valid since it has no constraints on S. In

Figure 4, we show the power function of our bootstrap tests in the case of a d-cycle, with d ∈ {100, 200},
with θ2 = . . . = θd = π

2(d−1) , and varying θ1 in [π/2, 5π/8]. We repeat the procedure H = 100 times, and

report the average decision as an estimate of the power function.

Our simulations so far have used Gaussian data, so that Little’s test is valid. We now repeat our

simulations with a heavy-tailed data distribution in order to assess the robustness of the methods. To this end,

we consider again a 3-cycle, and generate X{j,j+1},i
i.i.d.∼ logN(02,Σ{j,j+1}) for all i ∈ [200], j ∈ [3], where

logN(02,Σ{j,j+1}) stands for the log-normal distribution, meaning that if Y ∼ logN(02,Σ{j,j+1}) then Yi =

eZi , with Z ∼ N(02,Σ{j,j+1}). Here we vary θ1 ∈ [π/2 + π/12, π/12], with (θ2, θ3) = (3π/4, π/4). Figure 3
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Figure 2: 3-cycle with Gaussian data. We generate

X{j,j+1},i
i.i.d.∼ N(02,Σ{j,j+1}) for all i ∈ [200], j ∈ [3],

where we vary θ1 ∈ [θ2 + θ3, (θ2 + θ3 + π)/2], with
(θ2, θ3) = (π/3, π/6). We repeat the experiment H = 500
times, and report the average decision. The nominal level
α = 0.05 in red, B = 99.

Figure 3: 3-cycle with lognormal data. We generate

X{j,j+1},i
i.i.d.∼ logN(02,Σ{j,j+1}) for all i ∈ [200], j ∈ [3],

where we vary θ1 ∈ [π/2 + π/12, π/12], while fixing
(θ2, θ3) = (3π/4, π/4). We use again H = 500, B = 99
and α = 0.05. R(ΣS) is estimated using an independent
sample.

shows the analogue of Figure 2, in the case of artificial data from a multivariate log-normal distribution

rather than a Gaussian distribution. Note however that the covariance matrices do not coincide with the

original Σ{j,j+1}, hence on the x-axis we decided to estimate R(ΣS) using R(Σ̂S) using an independent sample

from the same log-normal distribution. As in our previous results, Little’s test based on d2µ exhibits no power

but maintains Type-I error control, even when we deviate from the Gaussian setting, which aligns with a

conjecture made in Little (1988). In contrast, Little’s test based on d2aug fails to control the Type-I error. On

the other hand, our three tests exhibit similar behavior to that in the Gaussian setting, with only a slight

decrease in power.

6.2 Omnibus approach

In this subsection we compare the omnibus and the combined approaches with Little’s tests in settings which

are closer to real-data applications. In this regard, we generate complete artificial data according to various

distributions, and then delete entries using the R package missMethods (Rockel, 2020). MCAR data are

generated with the function delete MCAR, where each entry of the data matrix is deleted independently of

the others with probability p ∈ (0, 1). Deviations from the null are generated by partitioning the columns in

two groups, group A where the missing values are generated, and group B which determines the missingness

mechanism, with two different mechanisms being considered. First, delete MAR 1 to x sets threshold values,

splits the rows into two further groups depending on whether columns in group B have values greater or

smaller than the threshold, and deletes some entries in columns in group A in a such a way that the probability
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Figure 4: Simulation of the power functions of our method with B = 99(blue) for d = 100 (left), and d = 200 (right),
with Gaussian data. In each example, we fix θ2 = . . . = θd = π

2(d−1)
, and vary θ1 in [π/2, 5π/8]. For each of this

setting, we repeat the experiment H = 100 times, and report the average decision. The nominal level α = 0.05 in
red.

for a value to be missing in group A divided by the probability for a value to be missing in group B equals 1

divided by x, with x to be specified as an input parameter. Second, delete MAR rank deletes each entry in

a column of group A with probability proportional to the rank of the same row in the corresponding column

of group B. For further details on these functions, and other methods to generate MCAR, MAR, MNAR

data, refer to Santos et al. (2019). These three functions were also chosen in the numerical analysis of a

test of MCAR based on U-statistics in Aleksić (2024). Before discussing the simulation results, we note that

in these settings, under the alternative, the collection of correlation matrices is only mildly incompatible

(as verified by numerical inspection), while the inconsistency in means plays a critical role in detecting

departures from MCAR. Consequently, the test based on pR demonstrates low power, unlike our omnibus

approach and Little’s test based on d2µ.

For Figures 5, 6, 7, we generated 3-dimensional datasets of sample size n = 200 distributed according

to a Clayton copula, with parameter 1 and Gaussian (N(0, 1)) margins, using the function mvdc from the

R-package copula Hofert et al. (2020). For Figure 5 we deleted the first two variables with delete MCAR(p)

for different values of p ∈ {0.05, . . . , 0.40}, in order to get an artificial setting coming from the null. For

each p, we repeat the simulation H = 500 times, and report the average Type-I error. Alternatives to the

null were generated using delete MAR 1 to x, with x = 9, for Figure 6, and delete MAR rank for Figure 7.

Again, for each p, we repeat the simulations 500 times, and report the average power. In this setting, Figures

6 and 7 demonstrate that all tests, apart from the one based on pR, perform similarly in terms of power. The

behaviour of the test based on pR can be attributed to the fact that, under the alternative, the collection of

correlation matrices is only mildly incompatible, with numerical inspection suggesting that incompatibility

decreases as p increases. Meanwhile, Figure 5 seems to indicate that all tests control the Type-I error at
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Figure 5: Size for MCAR data gen-
erate with delete MCAR(p), for vary-
ing probability p of having a miss-
ing value. Data from Clayton copula
with parameter 1 and N(0, 1) mar-
gins. B = 99, H = 500.

Figure 6: Power function
for MAR data generate with
delete MAR 1 to x(p, x = 9), for
varying probability p of having a
missing value. Data from the same
Clayton copula. B = 99, H = 500.

Figure 7: Power function
for MAR data generate with
delete MAR rank(p), for varying
probability p of having a missing
value. Data from the same Clayton
copula. B = 99, H = 500.

Figure 8: Size for MCAR data gen-
erate with delete MCAR(p), for vary-
ing probability p of having a miss-
ing value. Data from Clayton copula
with parameter 1 and Exp(1) mar-
gins. B = 99, H = 500.

Figure 9: Power function
for MAR data generate with
delete MAR 1 to x(p, x = 9), for
varying probability p of having a
missing value. Data from the same
Clayton copula. B = 99, H = 500.

Figure 10: Power function
for MAR data generate with
delete MAR rank(p), for varying
probability p of having a missing
value. Data from the same Clayton
copula. B = 99, H = 500.
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Figure 11: Size for MCAR data gen-
erate with delete MCAR(p), for vary-
ing probability p of having a missing
value. Data from Clayton copula with
parameter 1 and logN(0, 1) margins.
B = 99, H = 500.

Figure 12: Power function
for MAR data generate with
delete MAR 1 to x(p, x = 9), for
varying probability p of having a
missing value. Data from the same
Clayton copula. B = 99, H = 500.

Figure 13: Power function
for MAR data generate with
delete MAR rank(p), for varying
probability p of having a missing
value. Data from the same Clayton
copula. B = 99, H = 500.

the nominal level α, except possibly for Little’s test based on d2aug. This outcome supports once more the

conjecture in Little (1988) where it is suggested that even under normality, the asymptotic null distribution

of d2aug is unlikely to be reliable unless the sample size is large. We then move beyond the Gaussian setting

and explore different marginal distributions. Specifically, we consider exponential distributions (Exp(1)) in

Figures 8, 9, 10, with d = 3, and log-normal distributions (logN(0, 1)) in Figures 11, 12, 13, with d = 5.

In the setting of log-normal data, Figures 9, 10 show a slight loss in power for our omnibus and combined

approaches. However, this is offset by their better control of the Type-I error (Figure 8) compared to Little’s

test based on d2µ, and especially d2aug, which consistently fails to recognize the null and always rejects. The

results for the exponential setting fall between those of the Gaussian and log-normal settings.

Overall, these simulations demonstrate the effectiveness of our procedures. The combined approach

could serve as a valid extension of Little’s test based on d2µ when both means and covariance matrices are

taken into account, rather than just means. Interestingly, incorporating d2µ with Algorithms 1 and 3 does

not inflate the Type-I error, which is a significant limitation of Little’s test based on d2aug. On the other

hand, while the omnibus approach exhibits slightly weaker performance in terms of power, it provides more

rigorous control of the Type-I error. Additionally, it offers two further advantages compared to the combined

approach: (i) it can be applied to any missingness pattern S, even when not all pairs of variables are observed

simultaneously; and (ii) it remains effective even when the dimensionality d is large, as it does not depend

on the EM algorithm, which is known to encounter issues in practice when d > 50 (see the documentation

of the R function na.test in Yanagida (2024)).
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7 Proofs

7.1 Proof for Section 2

Proof of Theorem 1. We start by proving (i). Let PS ∈ P̄−Cα,2

S (0). Then

PPS {pR ≤ α}

= PPS

{
1 +

B∑
i=1

1{Rĉ/2(Σ̂S,b) ≥ R(Σ̂S)} ≤ α(1 +B), R(Σ̂S) ≤ 3/4

}
+ PPS

{
R(Σ̂S) > 3/4

}
≤ PPS

{
R(Σ̂S) > 0, R(Σ̂S) ≤ 3/4

}
+ PPS

{
R(Σ̂S) > 3/4

}
≤ 2PPS

{
R(Σ̂S) > 0

}
≤ 2PPS

{
max
S∈S

∥Σ̂S − ΣS∥2 > Cα,2

}
≤ 2

∑
S∈S

PPS

{
∥Σ̂S − ΣS∥2 > Cα,2

}
≤ α,

using (32) and the computations thereafter. As for part (ii), suppose R(ΣS) > 2ρ, with ρ ∈ (0, 1/2) to be

chosen later, and observe that we can make a Type II error only under the event BS := {R(Σ̂S) ≤ 3/4}.
Then, for all PS ∈ PS and B ≥ 2(1− α)/α, we can use Markov’s inequality to show that

PPS {pR > α}

= PPS

{
1 +

B∑
i=1

1{Rĉ/2(Σ̂S,b) ≥ R(Σ̂S)} > α(1 +B),BS

}
≤
BPPS

{
Rĉ/2(Σ̂S,1) ≥ R(Σ̂S),BS

}
α(B + 1)− 1

≤ 2

α
PPS

{
Rĉ/2(Σ̂S,1) ≥ R(Σ̂S),BS

}
≤ 2

α

(
PPS

{
R(Σ̂S) < ρ,BS

}
+ PPS

{
Rĉ/2(Σ̂S,1) ≥ ρ,BS

})
≤ 2

α

(
PPS

{
|R(Σ̂S)−R(ΣS)| > ρ

}
+ PPS

{
|Rĉ/2(Σ̂S,1)−Rĉ/2(Q̂S)| ≥ ρ,BS

})
,

where in the last inequality we used the fact that R(ΣS) > 2ρ and Rĉ/2(Q̂S) = 0. It is then enough to find

ρ ∈ (0, 1/2) such that

PPS

{
|R(Σ̂S)−R(ΣS)| > ρ

}
+ PPS

{
|Rĉ/2(Σ̂S,1)−Rĉ/2(Q̂S)| ≥ ρ,BS

}
≤ αβ

2
. (9)

To achieve this, we will draw on results from the proofs of Theorem 7 and Proposition 14, which are deferred

to later sections. In particular, the analysis of the first term in (9) follows directly from Theorem 7. For

the second term, we will draw on ideas from the proof of Proposition 14 to demonstrate that it suffices to

control the spectral norm of the covariance matrix of the bootstrap sample, which can be analysed using

Proposition 33 in Appendix D. Throughout the following, to assist the reader in following the argument, we

will explicitly reference the equations from the proofs of Theorem 7 and Proposition 14 whenever they are

used. Now, if we define the good set

AS :=
{
∥Ω̂S∥2,S ≤ 2ν2, ∥D̂−1/2

S ∥2,S ≤ 2/σmin, Σ̂S ⪰S
c

2
IS,

2max
S∈S

∥Σ̂−1/2
S ∥2∥D̂−1/2

S ∥2 max
i∈[nS ]

∥XS,i − µS∥2 ≤ 16

√
2ν2|S|
cσ2

min

+ 8

√
2ν2 log(12|S|nS/αβ)

cσ2
min︸ ︷︷ ︸

=:M

}
,
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we have

PPS

{
|R(Σ̂S)−R(ΣS)| > ρ

}
+ PPS

{
|Rĉ/2(Σ̂S,1)−Rĉ/2(Q̂S)| ≥ ρ,BS

}
≤ PPS

{
|R(Σ̂S)−R(ΣS)| > ρ

}
+ PPS

{
|Rĉ/2(Σ̂S,1)−Rĉ/2(Q̂S)| > ρ/2,BS

}
(30)

≤ PPS

{
∥Σ̂S − ΣS∥2,S > cρ/2,AS

}
+ PPS

{
∥Σ̂S,1 − Q̂S∥2,S > cρ/8,AS,BS

}
+ 2PPS

{
A∁

S

}
(29)

≤ PPS

{
∥Σ̂S − ΣS∥2,S > cρ/2

}
+ PPS

{
∥Σ̂S,1 − Q̂S∥2,S > cρ/8,AS,BS

}
+ 2PPS

{
∥Ω̂S − ΩS∥2,S > ν2

}
+ 2PPS

{
∥D̂−1/2

S D
1/2
S − IS∥2,S > 1

}
+ 2PPS

{
∥Σ̂S − ΣS∥2,S > c/2

}
+ 2PPS

{
2max
S∈S

∥Σ̂−1/2
S ∥2∥D̂−1/2

S ∥2 max
i∈[nS ]

∥XS,i − µS∥2 > M,

}
≤ PPS

{
∥Σ̂S − ΣS∥2,S > cρ/2

}
+ PPS

{
∥Σ̂S,1 − Q̂S∥2,S > cρ/8,AS,BS

}
+ 2PPS

{
∥Ω̂S − ΩS∥2,S > ν2

}
+ 4PPS

{
∥D̂−1/2

S D
1/2
S − IS∥2,S > 1

}
+ 4PPS

{
∥Σ̂S − ΣS∥2,S > c/2

}
+ 2PPS

{
max
S∈S

max
i∈[nS ]

∥XS,i − µS∥2 > 4ν
√
|S|+ 2ν

√
log(12|S|nS/αβ)

}
(35),(36)

≤ 40PPS

{
∥Ω̂S − ΩS∥2,S > σ4

mincρ/48ν
2
}
+ PPS

{
∥Σ̂S,1 − Q̂S∥2,S > cρ/8,AS,BS

}
+ 2PPS

{
max
S∈S

max
i∈[nS ]

∥XS,i − µS∥2 > 4ν
√
|S|+ 2ν

√
log(12|S|nS/αβ)

}
Prop.28

≤ 40PPS

{
∥Ω̂S − ΩS∥2,S > σ4

mincρ/48ν
2
}
+ |S|max

S∈S
PPS

{
∥Σ̂S,1 − Q̂S∥2 > cρ/8,AS,BS

}
+ αβ/6.

(10)

This shows that it is enough to choose ρ such that

max

(
40PPS

{
∥Ω̂S − ΩS∥2,S > σ4

mincρ/48ν
2
}
, |S|max

S∈S
PPS

{
∥Σ̂S,1 − Q̂S∥2 > cρ/8,AS,BS

})
≤ αβ/6. (11)

As for the first term in the maximum, an analogous argument to that employed in the proof of Theorem 7 en-

sures that 40PPS

{
∥Ω̂S − ΩS∥2,S > σ4

mincρ/48ν
2
}
≤ αβ/6 if ρ ≥ Cαβ,c for a sufficiently large absolute constant

K1 > 0. As for the latter term in (11), we focus on finding a ρ such that PPS

{
∥Σ̂S,1 − Q̂S∥2 > cρ/8,AS,BS

}
≤

αβ/6|S|. This would conclude the proof. Now, first observe that under BS, (5) implies that

∥Q̂S∥2 ≤ 1

1−R(Σ̂S)
∥Σ̂S∥2 ≤ 4∥Σ̂S∥2 = 4∥D̂−1/2

S Ω̂SD̂
−1/2
S ∥2 ≤ 4∥D̂−1/2

S ∥22∥Ω̂S∥2,

which is upper bounded by 32ν2/σ2
min under AS. Hence, using similar steps as in (33) and (35), for all S ∈ S

and x ∈ [0, 1] we get

PPS

{
∥Σ̂S,1 − Q̂S∥2 > x,AS,BS

}
∼(33)

≤ PPS

{
∥Ω̂S,1 − Q̂S∥2 > x/2,AS,BS

}
+ PPS

{
∥D̂−1/2

S,1 − IS∥2(1 + ∥D̂−1/2
S,1 ∥2) > σ2

minx/64ν
2,AS,BS

}
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≤ PPS

{
∥Ω̂S,1 − Q̂S∥2 > x/2,AS,BS

}
+ PPS

{
∥D̂−1/2

S,1 − IS∥2 > σ2
minx/192ν

2,AS,BS

}
+ PPS

{
∥D̂−1/2

S,1 ∥2 > 2,AS,BS

}
≤ PPS

{
∥Ω̂S,1 − Q̂S∥2 > x/2,AS,BS

}
+ 2PPS

{
∥D̂−1/2

S,1 − IS∥2 > σ2
minx/192ν

2,AS,BS

}
∼(35)

≤ PPS

{
∥Ω̂S,1 − Q̂S∥2 > x/2,AS,BS

}
+ 4PPS

{
∥Ω̂S,1 − Q̂S∥2 > σ2

minx/384ν
2,AS,BS

}
≤ 5PPS

{
∥Ω̂S,1 − Q̂S∥2 > σ2

minx/384ν
2,AS,BS

}
, (12)

which shows that it is enough to give a concentration bound for the sample covariance matrix of the bootstrap

sample. In this regard, recall that Algorithm 1 generates a bootstrap sample from the rotated data X̃S :=

(X̃S : S ∈ S), which for all S ∈ S and i ∈ [nS ] is of the form X̃S,i = Q̂
1/2
S Σ̂

−1/2
S D̂

−1/2
S (XS,i − µ̂S), where

Q̂S comes from the dual decomposition Σ̂S = (1 − R(Σ̂S))Q̂S + R(Σ̂S)Σ̂
′
S. As a result, for all S ∈ S, the

sample correlation of X̃S coincides with the sample covariance, and is equal to Q̂S . Also, observe that, since

X̃S,i = Q̂
1/2
S Σ̂

−1/2
S D̂

−1/2
S (XS,i− µ̂S), we have X̃(1)

S,i = Q̂
1/2
S Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S), where X

(1)
S,i is a bootstrap

sample from the original set of data XS = (XS,1, . . . , XS,nS
). This implies that

Ω̂S,1 − Q̂S = n−1
S

nS∑
i=1

X̃
(1)
S,i X̃

(1)T
S,i −

(
n−1
S

nS∑
i=1

X̃
(1)
S,i

)(
n−1
S

nS∑
i=1

X̃
(1)
S,i

)T
− Q̂S

= n−1
S

nS∑
i=1

Q̂
1/2
S Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)(X

(1)
S,i − µ̂S)

T D̂
−1/2
S Σ̂

−1/2
S Q̂

1/2
S

−

(
n−1
S

nS∑
i=1

Q̂
1/2
S Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)

)(
n−1
S

nS∑
i=1

Q̂
1/2
S Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)

)T
− Q̂S

= Q̂
1/2
S

{
n−1
S

nS∑
i=1

[Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)][Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)]

T − I|S|

−

(
n−1
S

nS∑
i=1

Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)

)(
n−1
S

nS∑
i=1

Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)

)T Q̂
1/2
S .

We thus get for all x ∈ [0, 1]

P
{
∥Ω̂S,1 − Q̂S∥2 > x,AS,BS

}
≤ P

{
∥Q̂S∥2∥n−1

S

nS∑
i=1

[Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)][Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)]

T − I|S|∥2 > x/2,AS,BS

}

+ P

{
∥Q̂S∥2∥Σ̂−1/2

S ∥22∥D̂
−1/2
S ∥22∥n−1

S

nS∑
i=1

(X
(1)
S,i − µ̂S)∥22 > x/2,AS,BS

}

≤ P

{
∥n−1

S

nS∑
i=1

[Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)][Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)]

T − I|S|∥2 > σ2
minx/64ν

2,AS

}

+ P

{
∥n−1

S

nS∑
i=1

(X
(1)
S,i − µ̂S)∥22 > cσ4

minx/512ν
2,AS

}
. (13)
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As for the first term in (13), observe that, under AS and conditionally on the data XS, we have

∥Σ̂−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)∥2 ≤ max

i∈[nS ]
∥Σ̂−1/2

S D̂
−1/2
S (XS,i − µ̂S)∥2 ≤ ∥Σ̂−1/2

S ∥2∥D̂−1/2
S ∥2 max

i∈[nS ]
∥XS,i − µ̂S∥2

≤ ∥Σ̂−1/2
S ∥2∥D̂−1/2

S ∥2
{
∥µ̂S − µS∥2 + max

i∈[nS ]
∥XS,i − µS∥2

}
= ∥Σ̂−1/2

S ∥2∥D̂−1/2
S ∥2

{
∥n−1

S

nS∑
i=1

(XS,i − µS)∥2 + max
i∈[nS ]

∥XS,i − µS∥2

}
≤ 2∥Σ̂−1/2

S ∥2∥D̂−1/2
S ∥2 max

i∈[nS ]
∥XS,i − µS∥2 ≤M a.s..

This, together with Proposition 33 in Appendix D implies that there exists a universal constant K2 > 0 such

that

P

{
∥n−1

S

nS∑
i=1

[Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)][Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)]

T − I|S|∥2 > σ2
minx/64ν

2,AS

}

≤ E

[
P

{
∥n−1

S

nS∑
i=1

[Σ̂
−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)][Σ̂

−1/2
S D̂

−1/2
S (X

(1)
S,i − µ̂S)]

T − I|S|∥2 > σ2
minx/64ν

2,AS | XS

}]

≤ 2 exp

{
−K2σ

4
minnSx

2

ν4M2 log nS

}
. (14)

As for the second term in (13), callingW = (W1, . . . ,WnS
) ∼ Multinomial(nS , [nS ], (n

−1
S , . . . , n−1

S )), we have

P

{
∥n−1

S

nS∑
i=1

(X
(1)
S,i − µ̂S)∥22 > cσ4

minx/512ν
2,AS

}

= P

{
∥n−1

S

nS∑
i=1

(Wi − 1)(XS,i − µS)∥2 >
√
cσ4

minx/512ν
2,AS, max

i∈[nS ]
|Wi − 1| ≤ 3 log(60|S|nS/αβ)

}

+ P
{
max
i∈[nS ]

|Wi − 1| > 3 log(60|S|nS/αβ)
}

= E

[
P

{
∥n−1

S

nS∑
i=1

(Wi − 1)(XS,i − µS)∥2 >
√
cσ4

minx/512ν
2,AS, max

i∈[nS ]
|Wi − 1| ≤ 3 log(60|S|nS/αβ) |W

}]

+ P
{
max
i∈[nS ]

|Wi − 1| > 3 log(60|S|nS/αβ)
}

Prop. 28

≤ 5|S| exp

{
− nScσ

4
minx

1922ν4 log2(60|S|nS/αβ)

}
+ αβ/60|S|,

(15)

where in the last inequality we used Proposition 29 in Appendix D, which ensures that P
{
maxi∈[nS ] |Wi − 1| > t

}
≤

nSe
t/(t+ 1)t+1 ≤ nSe

−t/3 for t ≥ 1. Now, combining (12), (13), (14), (15) gives for all S ∈ S

PPS

{
∥Σ̂S,1 − Q̂S∥2 > cρ/8,AS

}
≤ 10 exp

{
− K2σ

10
minc

3nSρ
2

ν10 log nS{|S|+ log(|S|nS/αβ)}

}
+ 5|S|+1 exp

{
− K3c

2σ6
minnSρ

ν6 log2(|S|nS/αβ)

}
+ αβ/12|S|,
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for sufficiently large universal constants K2,K3 > 0, which is upper bounded by αβ/6|S| if

ρ ≥ max

max
S∈S

K2ν
5

σ5
minc

3/2

√
log(nS) log(|S|/αβ){|S|+ log(|S|nS/αβ)}

nS
,

max
S∈S

K3ν
6

σ6
minc

2

{|S|+ log(|S|/αβ)} log2(|S|nS/αβ)
nS

)
.

Taking the maximum between this and Cαβ,c completes the proof in light of (11).

Proof of Proposition 2. We know from (41) in Appendix A that, in general, ΣS is compatible if and only if∑
j∈K

θj ≤ (|K| − 1)π +
∑
j ̸∈K

θj

for all K ⊆ [d] with |K| odd. Additionally, we can argue as in the proof of Proposition 11 (i) to show that

at most one of these inequalities can be an equality when (θ1, . . . , θd) are bounded away from {0, π}, which
is true by assumption. We can thus write the null as

P̄S(0) =
⋂

K⊆[d]
|K| odd

∑
j∈K

θj ≤ (|K| − 1)π +
∑
j ̸∈K

θj

 , (16)

and its boundary as ∂P̄S(0) =
⋃

K⊆[d]
|K| odd

FK , with

FK =
⋂
K̃ ̸=K

|K̃| odd

∑
j∈K̃

θj < (|K̃| − 1)π +
∑
j ̸∈K̃

θj

 ∩

∑
j∈K

θj = (|K| − 1)π +
∑
j ̸∈K

θj

 , (17)

which shows that, in the case of a non-singular d-cycle, being on the boundary of the null hypothesis is

equivalent to being in the relative interior of a face of the convex polyhedron defined in (16). Now, the first

part of the result about the asymptotic validity in the interior of (16) follows from Theorem 1, so that it is

enough to analyse what happens on the boundary. In this regard, we will establish the asymptotic validity

of our test for the case when (θ1, . . . , θd) ∈ F{1} (i.e. K = {1} in (17)), noting that the validity for the other

cases can be demonstrated analogously. In this context, since on the boundary we have R(Σ̂S) ≤ 3/4 with

high probability (w.h.p.) — a fact that follows by inverting the bound provided in Theorem 7 — it suffices

to analyse the bootstrap procedure. For asymptotic validity, we need to show that when (θ1, . . . , θd) ∈ F{1},

the random variables R(Σ̂S) and Rĉ/2(Σ̂S,1) | XS converge in distribution to the same limiting law. We will

now analyse each quantity separately.

As for the former, since min{1 + cos θj , 1− cos θj} ≥ c for all j ∈ [d] (assumption A2), we have w.h.p.∑
j∈K̃

θ̂j < (|K̃| − 1)π +
∑
j ̸∈K̃

θ̂j for all K̃ ̸= {1}. (18)
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Under this event, an analogous argument to that in the proof of Proposition 11 (iii) gives

R(Σ̂S) =

2 sin
(
θ̂1+φ̂1

2

)
1 + cos φ̂1

sin

(
θ̂1 − φ̂1

2

)
+

=

2 sin
(
θ̂1+φ̂1

2

)
1 + cos φ̂1

sin

1

2

θ̂1 − d∑
j=2

θ̂j − β̂



+

=

2 sin
(
θ̂1+φ̂1

2

)
1 + cos φ̂1

{
sin

(
θ̂1 −

∑d
j=2 θ̂j

2

)
cos

β̂

2
− cos

(
θ̂1 −

∑d
j=2 θ̂j

2

)
sin

β̂

2

}
+

, (19)

where (φ̂1, . . . , φ̂d) are as in Proposition 11 (iii), and β̂ ≡ β(θ̂1, . . . , θ̂d) is such that 0 ≤ β̂ ≤ θ̂1 −
∑d
j=2 θ̂j

and
∑d
j=2 φ̂j = β̂ +

∑d
j=2 θ̂j . Furthermore, since R(Σ̂S)

P→ R(ΣS) = 0 as nS → ∞, we have φ̂j
P→ θj for all

j ∈ [d], which also implies that β(θ̂1, . . . , θ̂d)
P→ 0. This, together with a Taylor approximation of Equation

(19) implies that

R(Σ̂S) =
sin θ1

1 + cos θ1

(θ̂1 − θ1)−
d∑
j=2

(θ̂j − θj)


+

+ oP(1/
√
n),

where θ̂j := cos−1(ρ̂j) and ρ̂j is Pearson’s sample correlation coefficient. Now, it is known (Lehmann, 1999,

Example 5.4.3) that
√
n(ρ̂1 − ρ1)

d→ N(0, γ21), where γ21 ≡ γ21(P{1,2}) was defined in (2). For example,

if P{1,2} is Gaussian, it simplifies to γ21 = (1 − ρ2)2. This, together with the Delta method, implies that
√
n{θ̂j − θj}

d→ N(0, γ2j / sin
2 θj) for all j ∈ [d], which further shows that

√
nR(Σ̂S)

d→ sin θ1
1 + cos θ1

N

0,

d∑
j=1

γ2j

sin2 θj


+

(20)

due to the independence between θ̂j1 and θ̂j2 for j1 ̸= j2. The limiting distribution has a point mass of 1/2

at zero, and is non-degenerate for positive values, as sin θ1 > 0 by (A2), and there exists j ∈ [d] such that

γ2j > 0.

As for the convergence of Rĉ/2(Σ̂S,1) | XS, we will split the proof in two steps. We will first show that

R(Σ̂S,1) | XS converges in distribution to (20), using the fact that Q̂S is bounded away from singularity and

lies on F{1} w.h.p., and then argue that Rĉ/2(Σ̂S,1) | XS = R(Σ̂S,1) | XS + oP(1/
√
n). Regarding the fact

that Q̂S is bounded away from singularity, observe that Proposition 11 (iii) implies that

min{1 + cos φ̂j , 1− cos φ̂j} ≥ min{1 + cos θ̂j , 1− cos θ̂j} for all j ∈ [d]. (21)

In order to show this, observe that, under (18), we have that (1− cos θ̂1)/(1 + cos φ̂1) = 1−R(Σ̂S) ∈ (0, 1),

which implies that φ̂1 ≤ θ̂1. Similarly, φ̂j ≥ θ̂j for all j ̸= 1. This, together with φ̂1 =
∑d
j=2 φ̂j , shows that

θ̂j ≤ φ̂j ≤ φ̂1 ≤ θ̂1 for all j ̸= 1, which completes the proof showing that Q̂S is at most as singular as Σ̂S w.h.p..

Note that this happens with high probability because the good event (18) happens with high probability.

Furthermore, together with φ̂1 =
∑d
j=2 φ̂j , the non-singularity of Q̂S shows that (φ̂1, . . . , φ̂d) ∈ F{1} w.h.p..
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Hence, the previous argument applies and gives

R(Σ̂S,1) | XS =
sin φ̂1

1 + cos φ̂1

(θ̂
(1)
1 − φ̂1)−

d∑
j=2

(θ̂
(1)
j − φ̂j)


+

+ oP(1/
√
n),

where θ̂
(1)
j := cos−1(ρ̂

(1)
j ) and ρ̂

(1)
j is the Pearson’s sample correlation coefficient for the bootstrap sample,

and φ̂1 is such that φ̂1
P→ θ1. Now, observe that

√
n{ρ̂(1)1 − cos φ̂1} | XS

d→ N(0, γ21). To see why this is the

case, calling P̃
{1,2}
n{1,2} := n−1

{1,2}
∑n{1,2}
i=1 X̃{1,2},i with X̃{1,2},i = Q̂

1/2
{1,2}Σ̂

−1/2
{1,2} diag

−1/2(σ̂2
{1,2})(X{1,2},i− µ̂{1,2}),

we have that γ2(P̃
{1,2}
n{1,2}) converges in probability to the γ2(·) coefficient of the standardised distribution

diag−1/2(σ2
{1,2})(X{1,2},1 − µ{1,2}), which is equal to γ21 as γ2(·) is invariant under standardisation (to see

why, recall the definitions of γ2(P ), f(u, v, w) and S in (2)). We can then reproduce the same argument

as before, replacing ΣS with Q̂S, and conclude using Slutsky’s theorem that R(Σ̂S,1) | XS converges in

distribution to the limiting normal distribution described in (20).

As for the second step, observe that, since P{j,j+1} has finite fourth moments for all j ∈ [d], we have that

Σ̂S,1 | XS
P→ Q̂S, hence λmin(Σ̂S,1) | XS ≥ λmin(Q̂S)/2 w.h.p.. On the other hand, we also proved in (21) that

λmin(Q̂S) ≥ λmin(Σ̂S) = ĉ w.h.p., hence Rĉ/2(Σ̂S,1) | XS = R(Σ̂S,1) | XS + oP(1/
√
n) using the definition of

Rz(·) in (7).

Putting all the pieces together, we have just shown that also
√
nRĉ/2(Σ̂S,1) | XS converges in distribution

to (20). Now, calling rnS the critical value of the bootstrap test when B → ∞ for fixed nS, this shows that rnS

converges to the (1−α)-quantile of the distribution in (20), which is positive for α < 1/2. Since the limiting

distribution of
√
nR(Σ̂S) is the same, we conclude that the probability of rejecting the null hypothesis on

the boundary converges to α.

7.2 Proofs for Section 3

Proof of Proposition 3. For any X ∈ M and XS ∈ MS we have

⟨AX,XS⟩S =
∑
S∈S

∑
j,j′∈S

((AX)S)jj′(XS)jj′ =
∑
S∈S

∑
j,j′∈S

Xjj′(XS)jj′

=

d∑
j,j′=1

Xjj′

∑
S∈S

1j,j′∈S(XS)jj′ = ⟨X,A∗XS⟩,

as claimed.

Proof of Proposition 4. The strategy is to use a semi-definite programming version of Farkas’ lemma. This

is well known in the relevant literature, but we provide a statement and short proof for completeness; see

Proposition 26 in Appendix C. First, rewrite the matrix completion problem

find Σ ∈ M such that

Σjj′ = (ΣS)jj′ ,∀S ∈ Sjj′

Σ ≽ 0
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as

find Σ ∈ M such that

⟨Σ, Ejj′⟩ = (ΣS)jj′ ,∀S ∈ Sjj′

Σ ≽ 0
(22)

where Ejj′ = (eje
T
j′ + ej′e

T
j )/2 and ej is the j-th column vector of the standard orthonormal basis of Rd.

In order to apply the semi-definite version of Farkas’ lemma we transform our problem so that the equality

constraints have zero on the right-hand side. To this end, define

Hj :=

(
0 eTj /2

ej/2 O

)
and GS,jj′ :=

(
−(ΣS)jj′ 0T

0 Ejj′

)
,

and consider the completion problem

find Σ̃ ∈ M such that


⟨Σ̃, Hj⟩ = 0,∀j ∈ [d]

⟨Σ̃, GS,jj′⟩ = 0,∀S ∈ Sjj′

Σ̃ ≽ 0.

(23)

The condition ⟨Σ̃, Hj⟩ = 0,∀j ∈ [d] forces Σ̃ to be in block diagonal form

Σ̃ :=

(
γ0,0 0T

0 Σ

)
.

Now, observe that (22) has a solution if and only if (23) has a non-zero solution. Indeed, for every solution

Σ0 of (22), then diag(1,Σ0) is a solution of (23). On the other hand, suppose that Σ̃0 = diag(γ0,0,Σ0) ̸= O

is a solution of (23). This implies that γ0,0 ̸= 0, otherwise 0 = ⟨Σ̃0, GS,jj′⟩ = −γ0,0(ΣS)jj′ + Σjj′ = Σjj′ ,

which would imply Σ̃0 = O. Being γ0,0 ̸= 0, we can rescale the bigger block in Σ̃0 by γ0,0, i.e. Σ0 =: γ0,0G,

and get 0 = ⟨Σ̃0, GS,jj′⟩ = −γ0,0(ΣS)jj′ + γ0,0Gjj′ = −(ΣS)jj′ + Gjj′ , which shows that G is a solution of

(22). This further implies that we can assume without loss of generality that γ0,0 = 1 when (23) admits a

non-zero solution. Now, by Proposition 26, we know that (23) has a non-zero solution Σ̃ = diag(1,Σ) if and

only if ∑
S∈S

∑
j,j′∈S

(XS)jj′GS,jj′ =
∑
S∈S

(
−⟨ΣS , XS⟩ 0T

0 1
2XS

)
=

(
−⟨ΣS, XS⟩ 0T

0 1
2A

∗XS

)
⊁ 0,

for all collections of matrices XS, not necessarily PSD. Now, this block matrix is positive definite if and only

if both A∗XS ≻ 0 and ⟨ΣS, XS⟩ < 0. Hence, (23) has a non-zero solution if and only if ⟨ΣS, XS⟩ ≥ 0 for all

XS such that A∗XS ≻ 0, and the claim follows.

Proof of Proposition 5. Weak duality, i.e. LHS ≤ RHS, always holds for SDPs (see Blekherman et al. (2012)),

but we include a short proof for the sake of completeness. In fact, for any ΣS ∈ PS, we can rewrite

inf{ϵ ∈ [0, 1] : ΣS ∈ (1− ϵ)P0
S + ϵPS} (24)
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as

inf{ϵ ∈ [0, 1] : ΣS ∈ (1− ϵ)P0
S + ϵPS} = 1− sup{ϵ ∈ [0, 1] : ΣS ∈ ϵP0

S + (1− ϵ)PS}

= 1− 1

d
sup{tr(Σ) : Σ ∈ P∗,ΣS −AΣ ⪰S 0,Σ11 = . . . = Σdd}.

Now, for any YS ∈ P∗
S such that A∗YS + Y ⪰ Id for some Y ∈ Y, and any Σ ∈ P∗ such that ΣS − AΣ ⪰S 0,

we have

tr(Σ) = ⟨Id,Σ⟩ = −⟨A∗YS + Y − Id,Σ⟩+ ⟨A∗YS + Y,Σ⟩ ≤ ⟨A∗YS,Σ⟩+ ⟨Y,Σ⟩

= ⟨A∗YS,Σ⟩ = ⟨YS, AΣ⟩S = ⟨YS,ΣS⟩S − ⟨YS,ΣS −AΣ⟩S ≤ ⟨YS,ΣS⟩S.

This shows that (24) is lower bounded by

1− 1

d
inf{⟨YS,ΣS⟩S : YS ∈ P∗

S , A
∗YS + Y ⪰ Id}. (25)

Weak duality follows upon noting that A∗X0
S = Id and ⟨X0

S ,ΣS⟩S = d and setting XS = YS − X0
S . This is

not surprising, as we already mentioned that weak duality always holds for SDP problems.

We will now prove strong duality for this problem. Our strategy is to write our primal and dual problems

in standard form and check Slater’s condition for the primal problem (25). We already mentioned that (24)

can be written as

1− 1

d
sup{tr(Σ) : Σ ∈ P∗,Σ11 = . . . = Σdd,ΣS −AΣ ⪰S 0}.

We now write this maximisation problem in standard form by introducing variables (ZS : S ∈ S) = ΣS−AΣ ∈
P∗
S . Enumerating S as {S1, . . . , Sm}, we instead optimise over block-diagonal matrices of the form

X =


Σ 0 · · · 0

0 ZS1
· · · 0

...
...

. . .
...

0 0 · · · ZSm


For such X our constraints are equivalent to X ⪰ 0,

⟨Ejj − E11, X⟩ = 0 for j = 2, . . . , d

and

⟨Ejj′ + ES,jj′ , X⟩ = (ΣS)jj′ for S ∈ S and j, j′ ∈ S,

where Ejj′ = (eje
T
j′ + ej′e

T
j )/2 is the binary symmetric matrix of the same dimension as X with its only

non-zero entries being in the (j, j′)-th and (j′, j)-th positions of the top left block, and where ES,jj′ =

(eS,je
T
S,j′ + eS,j′e

T
S,j)/2 is the binary symmetric matrix of the same dimension as X with its only non-zero

entries being in the (j, j′)-th and (j′, j)-th positions of the block occupied by ZS in X. Write C for the

diagonal matrix of the same dimension as X with Id in the top left block, and all other entries equal to zero.
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It is now possible to write

sup{tr(Σ) : Σ ∈ P∗, Σ11 = . . . = Σdd, ΣS −AΣ ⪰S 0}

= sup{⟨C,X⟩ : X ⪰ 0 is block diagonal, ⟨Ejj − E11, X⟩ = 0 for j = 2, . . . , d,

⟨Ejj′ + ES,jj′ , X⟩ = (ΣS)jj′ for S ∈ S and j, j′ ∈ S}, (26)

so that our dual problem (24) is now in standard form. Our primal problem (25) is put into standard form

by writing

inf{⟨ΣS, YS⟩ : A∗YS + Y ⪰ Id, YS ⪰S 0, YS ∈ MS, Y ∈ Y}

= inf

{∑
S∈S

∑
j,j′∈S

(ΣS)jj′yS,jj′ :
∑
S∈S

∑
j,j′∈S

yS,jj′Ejj′ +

d∑
j=2

yjj(Ejj − E11) ⪰ Id,

∑
S∈S

∑
j,j′∈S

yS,jj′ES,jj′ ⪰ 0 for all S ∈ S, yjj , yS,jj′ ∈ R for all S, j, j′
}
. (27)

With the problems written in standard form, it is now clear that (26) is the dual problem associated to (27);

see Theorem 3.1 in Vandenberghe and Boyd (1996). Observe further that the primal problem is strictly

feasible since YS = X0
S satisfies the linear constraints with Y equal to the zero matrix. Hence, by standard

duality results (Theorem 2.15 in Blekherman et al. (2012), Theorem 3.1 in Vandenberghe and Boyd (1996)),

we have that

sup{⟨C,X⟩ : X ⪰ 0 is block diagonal, ⟨Ejj − E11, X⟩ = 0 for j = 2, . . . , d,

⟨Ejj′ + ES,jj′ , X⟩ = (ΣS)jj′ for S ∈ S and j, j′ ∈ S}

= inf

{∑
S∈S

∑
j,j′∈S

(ΣS)jj′yS,jj′ :
∑
S∈S

∑
j,j′∈S

yS,jj′Ejj′ +

d∑
j=2

yjj(Ejj − E11) ⪰ Id,

∑
S∈S

∑
j,j′∈S

yS,jj′ES,jj′ ⪰ 0 for all S ∈ S, yjj , yS,jj′ ∈ R for all S, j, j′
}
,

and the result follows.

Proof of Proposition 6. (i) Convexity follows easily from basic properties of the supremum. Indeed, consider

Σ̃S := λΣ
(1)
S + (1− λ)Σ

(2)
S with λ ∈ [0, 1]. Observe that R is well defined at Σ̃S, as the convex combination

of correlation matrices is still a correlation matrix. Then, for all λ ∈ [0, 1],

R(Σ̃S) = sup

{
− 1

d
⟨XS, Σ̃S⟩ : XS +X0

S ⪰S 0, A∗XS + Y ⪰ 0 for some Y ∈ Y
}

= sup

{
− 1

d
⟨XS, λΣ

(1)
S + (1− λ)Σ

(2)
S ⟩ : XS +X0

S ⪰S 0, A∗XS + Y ⪰ 0 for some Y ∈ Y
}

≤ λ sup

{
− 1

d
⟨XS,Σ

(1)
S ⟩ : XS +X0

S ⪰S 0, A∗XS + Y ⪰ 0 for some Y ∈ Y
}

+ (1− λ) sup

{
− 1

d
⟨XS,Σ

(2)
S ⟩ : XS +X0

S ⪰S 0, A∗XS + Y ⪰ 0 for some Y ∈ Y
}
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= λR(Σ
(1)
S ) + (1− λ)R(Σ

(2)
S ),

and the convexity of R(·) follows.
(ii) R acts on PS, which is the space of correlation matrices over the patterns S. Now, the spectrahedron

of all correlation matrices of dimension p,

Ep =


(
x1, . . . , x(p2)

)
∈ R(

p
2) : ΣX =


1 x1 · · · xp−1

x1 1 · · · x2p−3

...
...

. . .
...

xp−1 x2p−3 · · · 1

 ⪰ 0

 ,

is called the elliptope, and identifies a closed subset of R(
p
2). This follows from the fact that the symmetry

condition ΣX = ΣTX defines a linear subspace of Rp of dimension
(
p
2

)
, while the PSD condition vTΣXv ≥ 0

for all v ∈ Rp defines a closed subset of R(
p
2), which is a convex cone. For further insights, refer to Laurent

and Poljak (1996). This implies that, for every pattern S, PS can be identified with a closed subspace of Rs,
where s =

∑
S∈S

(|S|
2

)
. The continuity of R follows from the fact that every convex function that is finite on

Rs is necessarily continuous (see Corollary 10.1.1. in Rockafellar (1970)).

To prove (iii), we will make use of the fact that the dual characterisation allows us to express R(ΣS′) as

1− 1

d′
sup{tr(Σ) : Σ ∈ P∗,Σ11 = . . . = Σd′d′ ,ΣS′ −AS′Σ ⪰S′ 0},

where d′ = | ∪S∈S′ S|. Now, let Σ̃ be an optimal feasible matrix for ΣS′ , where all the diagonal elements of

Σ̃ are the equal to each other by definition of R. Then, if we consider the restriction of Σ̃ on ∪S∈SS, call

it Σ̃|S, it is clear that ΣS − ASΣ̃|S ⪰S 0, since ΣS′ − AS′Σ ⪰S′ 0 and ΣS ⊆ ΣS′ by hypothesis, while Σ̃|S ⪰ 0

follows again by Cauchy’s interlacing theorem. Hence, calling d = | ∪S∈S S|, for every Σ̃ that is optimal for

ΣS′ , we can construct a feasible Σ̃|S for ΣS such that 1− tr(Σ̃|S)/d = R(ΣS′). This completes the proof.

7.3 Proofs for Section 4

Proof of Theorem 7. We are interested in finding Cα ∈ (0, 1) such that ∀α ∈ (0, 1)

PH0

{
R(Σ̂S) ≥ Cα

}
≤ α.

We have

PH0

{
R(Σ̂S) ≥ Cα

}
≤ PH0

{
R(Σ̂S) ≥ Cα, Σ̂S ⪰S

c

2
IS

}
+ 1− PH0

{
Σ̂S ⪰S

c

2
IS

}
. (28)

Since ΣS ⪰S cIS by assumption, we may bound the second part of (28) by writing

1 = PH0
{ΣS ⪰S cIS} = PH0

{
ΣS − Σ̂S + Σ̂S ⪰S cIS

}
≤ PH0

{
ΣS − Σ̂S ⪰S

c

2
IS

}
+ PH0

{
Σ̂S ⪰S

c

2
IS

}
≤ PH0

{
∥Σ̂S − ΣS∥2,S ≥ c

2

}
+ PH0

{
Σ̂S ⪰S

c

2
IS

}
.
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This implies that

1− PH0

{
Σ̂S ⪰S

c

2
IS

}
≤ PH0

{
∥Σ̂S − ΣS∥2,S ≥ c

2

}
. (29)

Now, define

t̄r(XS) =

d∑
j=1

|Sj |−1
∑
S∈Sj

(XS)jj

and observe that, for all XS ∈ MS, we have ⟨X0
S , XS⟩S = t̄r(XS). See Proposition 22 in Appendix B for a

proof of this fact. Using the arguments leading up to (6) above, the first term on the right-hand side of (28)

can be written as

PH0

{
R(Σ̂S) ≥ Cα, Σ̂S ⪰S

c

2
IS

}
= PH0

{
sup

XS∈Fc/2

−1

d
⟨XS, Σ̂S⟩S ≥ Cα, Σ̂S ⪰S

c

2
IS

}
,

where Fc/2 = {XS+X
0
S ⪰S 0, A∗XS+Y ⪰ 0 for some Y ∈ Y, ⟨XS+X

0
S ,

c
2IS⟩S ≤ d}. Discarding the condition

A∗XS + Y ⪰ 0 for some Y ∈ Y and enlarging our feasible to F̃c/2 := {XS +X0
S ⪰S 0, ⟨XS +X0

S ,
c
2IS⟩S ≤ d},

we have

PH0

{
R(Σ̂S) ≥ Cα, Σ̂S ⪰S

c

2
IS

}
= PH0

{
R̂−R ≥ Cα, Σ̂S ⪰S

c

2
IS

}
≤ PH0

{
|R̂−R| ≥ Cα, Σ̂S ⪰S

c

2
IS

}
≤ PH0

{
sup

XS∈F̃c/2

∣∣∣∣−1

d
⟨XS, Σ̂S − ΣS⟩S

∣∣∣∣ ≥ Cα

}

= PH0

{
sup

XS∈F̃c/2

∣∣∣⟨XS +X0
S , Σ̂S − ΣS⟩S − (t̄r(Σ̂S)− d)

∣∣∣ ≥ d · Cα

}

≤ PH0

{
∥Σ̂S − ΣS∥2,S · sup

XS∈F̃c/2

∥XS +X0
S∥∗,S ≥ d · Cα

}
≤ PH0

{
∥Σ̂S − ΣS∥2,S · 2d/c ≥ d · Cα

}
= PH0

{
∥Σ̂S − ΣS∥2,S ≥ c · Cα/2

}
, (30)

where we used Holder’s inequality for collections of matrices, and the fact that t̄r(Σ̂S) = d, since Σ̂S is a

collection of sample correlation matrices. Putting all the pieces together, we have

PH0

{
R(Σ̂S) ≥ Cα

}
≤ PH0

{
∥Σ̂S − ΣS∥2,S ≥ c · Cα/2

}
+ PH0

{
∥Σ̂S − ΣS∥2,S ≥ c/2

}
≤ 2PH0

{
∥Σ̂S − ΣS∥2,S ≥ c · Cα/2

}
, (31)

since P{X ≥ x1}+P{X ≥ x2} ≤ 2P{X ≥ min{x1, x2}}. Hence, in order to bound this probability above by

α, it is sufficient to find Cα such that

PH0

{
∥Σ̂S − ΣS∥2,S ≥ c · Cα/2

}
≤ α/2.
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We have

PH0

{
∥Σ̂S − ΣS∥2,S ≥ c · Cα/2

}
≤ PH0

{
max
S∈S

∥Σ̂S − ΣS∥2 ≥ c · Cα/2
}

≤
∑
S∈S

PH0

{
∥Σ̂S − ΣS∥2 ≥ c · Cα/2

}
≤ |S| ·max

S∈S
PH0

{
∥Σ̂S − ΣS∥2 ≥ c · Cα/2

}
. (32)

Hence, calling

Ct(S) :=
K1ν

4

σ4
min

√
|S|+ log(1/t)

n

for all S ∈ S, with K1 > 0 sufficiently large universal constants, it is immediate to see using Proposition 14

that it is sufficient to take

Cα ≥ 2

c
max
S∈S

Cα/2|S|(S),

while ensuring Cα ≤ 1, in order to have PH0

{
∥Σ̂S − ΣS∥2,S ≥ c · Cα/2

}
≤ α/2, and the first statement

follows. As for the last statement, observe that if R(ΣS) > Cα + Cβ , we have

P{R(Σ̂S} ≤ Cα} = P{R(Σ̂S)−R(ΣS ≤ Cα −R(ΣS)} ≤ P{R(Σ̂S)−R(ΣS) ≤ −Cβ}

≤ P{|R(Σ̂S)−R(ΣS)| ≥ Cβ} ≤ β,

using the exact same concentration bound we employed to control the Type-I error.

The analysis of R(Σ̂S) in Theorem 7 is crucially based on the fact that we can control the oscillation

|R(Σ̂S) − R(ΣS)| using maxS∈S ∥Σ̂S − ΣS∥2, where the ΣS are the Pearson population correlation matrices

and Σ̂S are the corresponding Pearson sample correlation matrices. We now state and prove a tail bound for

the spectral norm ∥Σ̂ − Σ∥2, where Σ is the population correlation matrix and Σ̂ is the sample correlation

matrix of complete data.

Proposition 14. Suppose we observe an i.i.d sample X1, · · · , Xn ∼ X, where X is ν-subgaussian random

vector in Rd with mean µ. Let µ̂ be the sample mean, and let Ω and Ω̂ := n−1
∑n
i=1XiX

T
i − µ̂µ̂T be the

population and sample covariance matrices, respectively. Let Σ = D−1/2ΩD−1/2 be the population correlation

matrix, where D = diag(Ω), and Σ̂ = D̂−1/2Ω̂D̂−1/2 be the sample correlation matrix, where D̂ = diag(Ω̂).

Then, there exist a universal constant K1 > 0 such that, for every t ∈ [0, 1] such that Ct ≤ 1, we have

P{∥Σ̂− Σ∥2 > Ct} ≤ t where

Ct :=
K1ν

4

σ4
min

√
d+ log(1/t)

n

and σ2
min := min

j∈[d]
Ωjj.

Proof of Proposition 14. We will prove the claim by showing that it is sufficient to bound the spectral norm

of the difference between the sample covariance matrix and its population counterpart, for which classical

tail bounds apply. Now, observe that, for all x ∈ [0, 1], the triangle inequality and the sub-multiplicativity

38



of the spectral norm imply that

P
{
∥Σ̂− Σ∥2 > x

}
= P

{
∥D̂−1/2Ω̂D̂−1/2 −D−1/2ΩD−1/2∥2 > x

}
≤ P

{
∥D̂−1/2Ω̂D̂−1/2 −D−1/2Ω̂D−1/2∥2 > x/2

}
+ P

{
∥D−1/2(Ω̂− Ω)D−1/2∥2 > x/2

}
≤ P

{
∥D̂−1/2Ω̂(D̂−1/2 −D−1/2)∥2 + ∥(D̂−1/2 −D−1/2)Ω̂D−1/2∥2 > x/2

}
+ P

{
∥Ω̂− Ω∥2 > σ2

minx/2
}

≤ P
{
∥D̂−1/2 −D−1/2∥2∥Ω̂∥2(∥D̂−1/2∥2 + ∥D−1/2∥2) > x/2

}
+ P

{
∥Ω̂− Ω∥2 > σ2

minx/2
}
. (33)

As for the first term in (33), using the fact that ∥D−1/2∥2 ≤ 1/σmin and ∥Ω∥2 ≤ ν2 due to subgaussianity,

we further have

P
{
∥D̂−1/2 −D−1/2∥2∥Ω̂∥2(∥D̂−1/2∥2 + ∥D−1/2∥2) > x/2

}
≤ P

{
∥D̂−1/2 −D−1/2∥2∥Ω̂∥2(∥D̂−1/2∥2 + ∥D−1/2∥2) > x/2, ∥Ω̂∥2 ≤ 2ν2, ∥D̂−1/2∥2 ≤ 2/σmin

}
+ P{∥Ω̂∥2 > 2ν2}+ P{∥D̂−1/2∥2 > 2/σmin}

≤ P
{
∥D̂−1/2 −D−1/2∥2 > σminx/12ν

2
}
+ P{∥Ω̂− Ω∥2 > ν2}+ P{∥D̂−1/2 −D−1/2∥2 > 1/σmin}

≤ P
{
∥D̂−1/2D1/2 − I∥2 > σ2

minx/12ν
2
}
+ P{∥Ω̂− Ω∥2 > ν2}+ P{∥D̂−1/2D1/2 − I∥2 > 1}

≤ 2P
{
∥D̂−1/2D1/2 − I∥2 > σ2

minx/12ν
2
}
+ P{∥Ω̂− Ω∥2 > ν2}, (34)

where in the last step we used the fact that x ∈ [0, 1] and σ2
min ≤ ∥Ω∥2 ≤ ν2. As for the first term in (34),

for all x > 0 we have

P
{
∥D̂−1/2D1/2 − I∥2 > x

}
= P

{
max
j∈[d]

|σj/σ̂j − 1| > x

}
≤ P

{
max
j∈[d]

|σj/σ̂j − 1| > x,max
j∈[d]

|σ̂2
j /σ

2
j − 1| ≤ 3/4

}
+ P

{
max
j∈[d]

|σ̂2
j /σ

2
j − 1| > 3/4

}
≤ P

{
max
j∈[d]

|σ̂j/σj − 1| > x/2

}
+ P

{
max
j∈[d]

|σ̂2
j /σ

2
j − 1| > 3/4

}
≤ P

{
max
j∈[d]

|σ̂2
j /σ

2
j − 1| > x/2

}
+ P

{
max
j∈[d]

|σ̂2
j /σ

2
j − 1| > 3/4

}
≤ 2P

{
max
j∈[d]

|σ̂2
j /σ

2
j − 1| > x/2 ∧ 3/4

}
≤ 2P

{
max
j∈[d]

|σ̂2
j − σ2

j | > σ2
min(x/2 ∧ 3/4)

}
= 2P

{
∥D̂ −D∥2 > σ2

min(x/2 ∧ 3/4)
}

= 2P
{
∥ diag(diag(Ω̂− Ω))∥2 > σ2

min(x/2 ∧ 3/4)
}
≤ 2P

{
∥Ω̂− Ω∥2 > σ2

min(x/2 ∧ 3/4)
}
, (35)

where in the second and third inequalities we used the fact that |1/
√
x − 1| ≤ 2|

√
x − 1| for |x − 1| ≤ 3/4

and the fact that |
√
x− 1| ≤ |x− 1|, respectively. Combining (33), (34), (35) gives

P
{
∥Σ̂− Σ∥2 > x

}
≤ P

{
∥Ω̂− Ω∥2 > σ2

minx/2
}
+ P

{
∥Ω̂− Ω∥2 > ν2

}
+ 4P

{
∥Ω̂− Ω∥2 > σ2

min(3/4 ∧ σ2
minx/24ν

2)
}
≤ 6P

{
∥Ω̂− Ω∥2 > σ4

minx/24ν
2
}
, (36)

using again the fact that x ∈ [0, 1] and σ2
min ≤ ν2, which shows that it is enough to control ∥Ω̂ − Ω∥2. In
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this regard, for all x > 0 we have

P
{
∥Ω̂− Ω∥2 > x

}
= P

{
∥n−1

n∑
i=1

XiX
T
i − µ̂µ̂T − Ω∥2 > x

}

= P

{
∥n−1

n∑
i=1

(Xi − µ)(Xi − µ)T − Ω− (µ̂− µ)(µ̂− µ)T ∥2 > x

}

≤ P

{
∥n−1

n∑
i=1

(Xi − µ)(Xi − µ)T − Ω∥2 > x/2

}
+ P

{
∥µ̂− µ∥22 > x/2

}
= P

{
∥n−1

n∑
i=1

(Xi − µ)(Xi − µ)T − Ω∥2 > x/2

}
+ P

{
∥n−1

n∑
i=1

(Xi − µ)∥2 >
√
x/2

}

≤ 2 · 9d exp
{
−n x

32ν2
∧
( x

32ν2

)2}
+ 5d exp

{
− nx

16ν2

}
,

where we used Propositions 28 and 32 in Appendix D in the last inequality. Inverting this bound leads to

∥Ω̂− Ω∥2 ≤ K1ν
2

√
d+ log(1/t)

n
∨ d+ log(1/t)

n
, (37)

with probability ≥ 1 − t, for a universal constant K1 > 0 sufficiently large. Now, combining this with (36)

and (37) shows that

∥Σ̂− Σ∥2 ≤ K1ν
4

σ4
min

√
d+ log(1/t)

n
∨ d+ log(1/t)

n
, (38)

with probability ≥ 1 − t, and the assumption that Ct ≤ 1 allows focusing on the subgaussian regime. This

completes the proof.

First, observe that the dependence on 1/σ2
min is reasonable, as the smaller the minimum variance the

more problematic the normalisation matrix D−1/2. Second, observe that since we are restricting to the case

Ct ≤ 1, i.e. n ≳ d, the subgaussian regime prevails, and we obtain that

∥Σ̂− Σ∥2 ≲

√
d

n

in probability. Similar rates, with logarithmic factors, were found in high-dimensional covariance matrix

estimation with missing observations (Lounici, 2014), sample covariance matrix estimator of reduced effective

rank population matrices (Bunea and Xiao, 2015), concentration of the adjacency matrix and of the Laplacian

in random graphs (Oliveira, 2010), and in the statistical analysis of latent generalized correlation matrix

estimation in transelliptical distribution (Han and Liu, 2017). In particular, using the additional assumption

that the data is generated according to a transelliptical distribution, Han and Liu (2017) gave an estimator

K̂ based on Kendall’s tau and proved that

∥K̂ − Σ∥2 ≲

√
r(Σ) log(d)

n
,
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where r(Σ) := tr(Σ)/∥Σ∥2 is the effective dimension of Σ. This is analogous to the bound given in Proposition

14, where we have an extra factor of ν2/σ2
min, which can be interpreted as the condition number and might

lead to a suboptimal bound when it is large, and the ambient dimension d in place of the intrinsic dimension

r(Σ). This would improve the bound sensibly in the case of an approximately low-rank correlation matrix.

7.4 Proofs for Section 5.1

Proof of Proposition 8. Let σ2
S be a nonnegative collection such that āvj(σ

2
S) = 1 for all j ∈ [d]. Using, for

the third equality, the facts that AV 1d also satisfies these properties and that āv is linear, we have that

1− V (σ2
S) = 1− inf

{
ϵ ∈ [0, 1] : σ2

S = (1− ϵ)AV 1d + ϵσ′2
S with āvj(σ

′2
S ) = 1 for all j ∈ [d]

}
= sup

{
ϵ ∈ [0, 1] : σ2

S = ϵAV 1d + (1− ϵ)σ′2
S with āvj(σ

′2
S ) = 1 for all j ∈ [d]

}
= sup

{
ϵ ∈ [0, 1] : ϵ ≤ min

j∈[d]
min
S∈Sj

σ2
S,j

}
= min
j∈[d]

min
S∈Sj

σ2
S,j ,

as claimed.

Proof of Theorem 9. We are interested in finding C
(R+V )
α ∈ (0, 2) such that ∀α ∈ (0, 1) we have

PH0{R(Σ̂S) + V (σ̂2
S) ≥ C(R+V )

α } ≤ α.

First, observe that

PH0
{R(Σ̂S) ≥ C(R+V )

α /2}+ PH0
{V (σ̂2

S) ≥ C(R+V )
α /2},

so that it is enough to find C
(R+V )
α such that

max
{
PH0

{R(Σ̂S) ≥ C(R+V )
α /2},PH0

{V (σ̂2
S) ≥ C(R+V )

α /2}
}
≤ α/2.

As for the former, Theorem 7 applies, showing that

PH0
{R(Σ̂S) ≥ C(R+V )

α /2} ≤ α/2 (39)

if C
(R+V )
α ≥ 2Cα/2, as long as Cα/2 ≤ 1. As for the second term, since V (σ2

S) = 0 under the null,

PH0

{
V (σ̂2

S) ≥ C(R+V )
α /2

}
= PH0

{
V (σ̂2

S)− V (σ2
S) ≥ C(R+V )

α /2
}
≤ PH0

{
|V (σ̂2

S)− V (σ2
S)| ≥ C(R+V )

α /2
}

= PH0

{
|min
j∈[d]

min
S∈Sj

σ̂2
S,j − min

j∈[d]
min
S∈Sj

σ2
S,j | ≥ C(R+V )

α /2

}
≤ PH0

{
max
j∈[d]

max
S∈Sj

|σ̂2
S,j − σ2

S,j | ≥ C(R+V )
α /2

}
≤
∑
S∈S

∑
j∈S

PH0

{
|σ̂2
S,j − σ2

S,j | ≥ C(R+V )
α /2

}

≤

(∑
S∈S

|S|

)
max
j∈[d]

max
S∈Sj

PH0

{
|σ̂2
S,j − σ2

S,j | ≥ C(R+V )
α /2

}
.
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Now, the standard Chernhoff method for subgaussian and subexponential random variables (see Propositions

27 and 30 in Appendix D) gives, for all j ∈ [d], for all S ∈ Sj , for all x ≤ 8ν2 (so that we can focus on the

subgaussian regime),

PH0

{
|σ̂2
S,j − σ2

S,j | > x
}
≤ P

|n−1
S

∑
i∈[nS ]

(XS,ij − µ̂S,j)
2 − E[(XS,1j − µS,j)

2]| > x


≤ P

|n−1
S

∑
i∈[nS ]

(XS,ij − µS,j)
2 − E[(XS,1j − µS,j)

2]| > x/2

+ P
{
|µ̂S,j − µS,j |2 > x/2

}
≤ 2 exp

{
− nSx

2

1024ν4

}
+ 2 exp

{
−nSx

8ν2

}
≤ 4 exp

{
− nSx

1024ν4

}
≤ 4 exp

{
− (minS∈S nS)x

2

1024ν4

}
.

This implies that, if C
(R+V )
α ≤ 16ν2, PH0

{
V (σ̂2

S) ≥ C
(R+V )
α /2

}
≤ α/2 is satisfied if

(∑
S∈S

|S|

)
exp

{
−minS∈S nSC

2
α

1024ν4

}
≤ α

8
,

which further shows that it is sufficient to take

C(R+V )
α ≥ K2ν

2

√
log
(∑

S∈S |S|/α
)

minS∈S nS
, (40)

for a universal constant K2 > 0. In order to satisfy both (39) and (40) at the same time, it is sufficient to

take the maximum between the two right-hand sides, while ensuring that C
(R+V )
α ≤ min{2, 16ν2}, and the

first statement follows. As for the second part concerning the Type-II error, the proof follows similarly to

that of the second part of Theorem 7.

Proof of Theorem 10. For the d-cycle, our measure of consistency of the variances is

V (ΣS) = 1− min
j∈[d]

min
S∈{{j−1,j},{j,j+1}}

σ2
S,j .

We will show that testing

H0 : V (ΣS) = 0 vs. H1(ρ) : V (ΣS) > ρ,

requires at least a separation of the order
√
log d/n, and since H ′

1 : R(ΣS) + V (σ2
S) > ρ, the statement

would follow. Formally, this corresponds to assuming that ΣS is always compatible, and constructing prior

distributions just on {V (σ2
S) = 0} and{V (σ2

S) > ρ}. We construct a lower bound to show that the minimax

separation in this case is at least c1
√
log d/mini∈[d] ni, where c1 > 0 is a universal constant. Let

P0 =

(
N⊗n1

(
02,

(
1 0

0 1

))
, . . . , N⊗nd

(
02,

(
1 0

0 1

)))
,
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and

Pj =

(
N⊗n1

(
02,

(
1 0

0 1

))
, . . . , N⊗nj

(
02,

(
1 0

0 1− δ

))
,

N⊗nj+1

(
02,

(
1 + δ 0

0 1

))
, . . . , N⊗nd

(
02,

(
1 0

0 1

)))
,

for j ∈ [d], and δ > 0. It is clear that each Pj lies in H1(δ), and that

dPj
dP0

((x1,1, y1,1), . . . , (x1,n1 , y1,n1), (x2,1, y2,1), . . . , (xd,nd
, yd,nd

)

=
∏
h∈[nj ]

1

(1− δ)1/2
exp

{
− δ

2(1− δ)
y2j,h

} ∏
h∈[nj+1]

1

(1 + δ)1/2
exp

{
δ

2(1 + δ)
x2j+1,h

}
.

Now, using the same strategy outlined in Section 5, it is enough to control the Total Variation distance

4TV

{
P0,

1

d

d∑
j=1

Pj

}2

≤ χ2

P0,
1

d

d∑
j=1

Pj

 =

∫ { 1
d

∑d
j=1 dPj}2

dP0
− 1

=
1

d2

d∑
j1,j2=1

∫
dPj1dPj2
dP0

− 1 =
1

d2

d∑
j1,j2=1

∫
dPj1
dP0

dPj2
dP0

dP0 − 1.

Now, it is easy to see that if j2 /∈ {j1 − 1, j1, j1 + 1}, then
∫ dPj1

dP0

dPj2

dP0
dP0 = 1. This happens to be the case

also when j2 = j1 ± 1, since, for j2 = j1 − 1 =: j − 1, we have∫
dPj1
dP0

dPj2
dP0

dP0 =

∫
(1− δ)−nj−1/2(1− δ2)−nj/2(1 + δ)−nj+1/2

∏
h∈[nj−1]

exp

{
− δ

2(1− δ)
y2j−1,h

}

×
∏
h∈[nj ]

exp

{
δ

2(1 + δ)
x2j,h −

δ

2(1− δ)
y2j,h

} ∏
h∈[nj+1]

exp

{
δ

2(1 + δ)
x2j+1,h

}
dP0

=

∫ ∏
h∈[nj−1]

1

2π(1− δ)1/2
exp

−1

2

(
xj−1,h

yj−1,h

)T (
1 0

0 1
1−δ

)(
xj−1,h

yj−1,h

) dxj−1dyj−1

×
∫ ∏

h∈[nj ]

1

2π(1− δ2)1/2
exp

−1

2

(
xj,h

yj,h

)T (
1

1+δ 0

0 1
1−δ

)(
xj,h

yj,h

) dxjdyj

×
∫ ∏

h∈[nj+1]

1

2π(1 + δ)1/2
exp

−1

2

(
xj+1,h

yj+1,h

)T (
1

1+δ 0

0 1

)(
xj+1,h

yj+1,h

) dxj+1dyj+1,

which is equal to 1. Similarly, if j1 = j2 = j,∫
dPj1
dP0

dPj2
dP0

dP0 =

∫
(1− δ)−nj (1 + δ)−nj+1

∏
h∈[nj ]

exp

{
− δ

1− δ
y2j,h

} ∏
h∈[nj+1]

exp

{
δ

1 + δ
x2j+1,h

}
dP0
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= (1− δ)−nj (1 + δ)−nj+1

∫ ∏
h∈[nj ]

1

2π
exp

−1

2

(
xj,h

yj,h

)T (
1 0

0 1+δ
1−δ

)(
xj,h

yj,h

) dxjdyj

×
∫ ∏

h∈[nj+1]

1

2π
exp

−1

2

(
xj+1,h

yj+1,h

)T (
1−δ
1+δ 0

0 1

)(
xj,h

yj,h

) dxj+1dyj+1

= (1− δ2)−nj/2(1− δ2)−nj+1/2

∫ ∏
h∈[nj ]

1

2π

√
1 + δ

1− δ
exp

−1

2

(
xj,h

yj,h

)T (
1 0

0 1+δ
1−δ

)(
xj,h

yj,h

) dxjdyj

×
∫ ∏

h∈[nj+1]

1

2π

√
1− δ

1 + δ
exp

−1

2

(
xj+1,h

yj+1,h

)T (
1−δ
1+δ 0

0 1

)(
xj,h

yj,h

) dxj+1dyj+1

= (1− δ2)−nj/2(1− δ2)−nj+1/2 = (1− δ2)−(nj+nj+1)/2.

It follows that

4TV

{
P0,

1

d

d∑
j=1

Pj

}2

≤ 1

d2

d∑
j1,j2=1

∫
dPj1
dP0

dPj2
dP0

dP0 − 1

=
1

d2

d∑
j1,j2=1

1j1=j2(1− δ2)−(nj1+nj1+1)/2 + 1j1 ̸=j2

=
1

d2

d∑
j=1

(1− δ2)−(nj+nj+1)/2 − 1

d

≤ 1

d2

d∑
j=1

exp{+(nj + nj+1)δ
2/2} − 1

d
,

from which we see that TV
{
P0,

1
d

∑d
j=1 Pj

}
≤ 1/2 if δ ≤

√
2 log(1 + d)/(nj + nj+1) for all j ∈ [d]. The

above bound on the total variation distance demonstrates that we may choose δ =
√

log(1 + d)/minj nj ,

and hence that we have

ρ∗ ≥ δ =

{
log(1 + d)

minj nj

}1/2

,

as claimed.

Proof of Proposition 11. (i) We may suppose without loss of generality that |ρi| ̸= 1 as, otherwise, we may

perform the reduction given in Proposition 18. Possibly, this reduces the d-cycle to a 3-cycle: if there are no

more correlations equal to ±1, then we proceed, otherwise we know R exactly thanks to Example 4 and we

can check that the claim holds. Now, calling Mi,i+1 = cosφi, we have

λ∗ = 1−R(ΣS) =
1

d
sup{tr(Σ) : Σ ⪰ 0,Σ11 = . . . = Σdd,ΣS′ −AΣ ⪰S′ 0}

= sup{λ :M ⪰ 0,M11 = . . . =Mdd = 1, 1− λ ≥ |ρi − λ cosφi| for all i ∈ [d]}

= sup

{
λ : λ ≤ min

i∈[d]
min

{
1− ρi

1− cosφi
,

1 + ρi
1 + cosφi

}
,
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∑
i∈K

φi ≤ (|K| − 1)π +
∑
i ̸∈K

φi for all K ⊆ [d] with |K| odd
}
.

Now, this implies that

1

λ∗
= inf

{
z : z ≥ max

i∈[d]
max

{
1− cosφi
1− ρi

,
1 + cosφi
1 + ρi

}
,

∑
i∈K

φi ≤ (|K| − 1)π +
∑
i ̸∈K

φi for all K ⊆ [d] with |K| odd
}
.

Calling g(φi) = (1 − cosφi)/(1 − ρi) and h(φi) = (1 + cosφi)/(1 + ρi) for all i ∈ [d], this is a linearly

constrained finite minimax problem (see Chapter 2 in Polak (2012)), namely

1

λ∗
= minmax

i∈[d]
max{g(φi), h(φi)}

under the 2d−1 linear constraints∑
i∈K

φi ≤ (|K| − 1)π +
∑
i̸∈K

φi for all K ⊆ [d] with |K| odd,

which is equivalent to

minimise z

subject to g(φi) ≤ z for all i ∈ [d],

h(φi) ≤ z for all i ∈ [d],∑
i∈K

φi ≤ (|K| − 1)π +
∑
i̸∈K

φi for all K ⊆ [d] with |K| odd.

As a result, every optimal solution (φ∗
1, . . . , φ

∗
d) must satisfy the Karush–Kuhn–Tucker (KKT) conditions

(see Chapter 5 of Boyd and Vandenberghe (2004), Chapter 28-30 of Rockafellar (1970))

(i)

(
λi

1− ρi
− λi+d

1 + ρi

)
sinφi =

∑
|K|odd
i∈K

µK −
∑

|K|odd
i∈Kc

µK , for all i ∈ [d],

(ii) λi ≥ 0, λd+i ≥ 0, for all i ∈ [d],

(iii)

d∑
i=1

(λi + λd+i) = 1,

(iv) λi(g(φi)−max
i∈[d]

max{g(φi), h(φi)}) = 0, for all i ∈ [d],

(v) λd+i(h(φi)−max
i∈[d]

max{g(φi), h(φi)}) = 0, for all i ∈ [d],

(vi) g(φi) ≤ max
i∈[d]

max{g(φi), h(φi)}), for all i ∈ [d],

(vii) h(φi) ≤ max
i∈[d]

max{g(φi), h(φi)}), for all i ∈ [d],
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(viii) µK ≥ 0, for all K ⊆ [d] with |K| odd,

(ix)
∑
i∈K

φi ≤ (|K| − 1)π +
∑
i ̸∈K

φi for all K ⊆ [d] with |K| odd,

(x) µK

∑
i∈K

φi − (|K| − 1)π −
∑
i̸∈K

φi

 = 0, for all K ⊆ [d] with |K| odd.

Now, observe that conditions (iv) and (v) imply that, for all i ∈ [d], either g(φi) or h(φi) reaches the

maximum, meaning that the minimal 1/λ∗ is equal to this common value. Indeed, if the original d-cycle is

completable, this statement is trivial, since we must have |ρi − cosφ∗
i | = 0. This is the only case in which

we can have
1− ρi

1− cosφi
=

1 + ρi
1 + cosφi

= 1,

meaning that when the d-cycle is incompatible, then either maxi∈[d] max{g(φi), h(φi)} − g(φi) > 0 or

maxi∈[d] max{g(φi), h(φi)}−h(φi) > 0. Indeed, if R > 0, either λi or λd+i must be equal to zero since either

g(φi) or h(φi) has a strictly positive gap from maxi∈[d] max{g(φi), h(φi)}. If both λi = 0 and λi+d = 0, we

would have ∑
|K|odd
i∈K

µK =
∑

|K|odd
i∈Kc

µK ,

which is a contradiction due to the fact that there exists a unique µK ̸= 0. To prove the existence part,

observe that if µK = 0 for all K ⊆ [d] with |K| odd, then we would have(
λi

1− ρi
− λi+d

1 + ρi

)
sinφi = 0

for all i ∈ [d], and since there exists at least a j such that λj + λd+j > 0 due to (iii), this would imply that

φj ∈ {0, π}, which leads to θj ∈ {0, π}, which is excluded from our analysis. To prove the uniqueness part,

suppose there exists another [d] ⊇M ̸= K, with |M | odd, such that
∑
i∈K

φi = (|K| − 1)π +
∑
i ̸∈K

φi∑
i∈M

φi = (|M | − 1)π +
∑
i̸∈M

φi,

hence summing these equalities gives

2

( ∑
i∈K∩M

φi −
∑

i∈Kc∩Mc

φi

)
= (|K|+ |M | − 2)π.

Now, if we suppose that Kc ∩M c = ∅, meaning that K ∪M = [d], it is easy to show that 2|K ∩M | ≤
|K|+ |M | − 2. Indeed, |K ∩M | ≤ |K| ∧ |M |, with equality if and only if M ⊆ K (or viceversa): in this case

we must have |K| ≥ |M |+ 2, otherwise they would be equal, hence 2|K ∩M | ≤ 2(|K| ∧ |M |) = 2|M | while
|K|+|M |−2 ≥ |M |+2+|M |−2 = 2|M |. If the equality is not reached, 2|K∩M | ≤ 2(|K|∧|M |−1) = 2|M |−2,
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while |K|+ |M | − 2 ≥ |M |+ |M | − 2 = 2|M | − 2. This shows that 2|K ∩M | ≤ |K|+ |M | − 2, which implies

that the equality above can be verified only if φi = π for all i ∈ K ∩M , which is excluded from our analysis.

Furthermore, if Kc ∩M c ̸= ∅, this is even worse unless φi = 0 for all i ∈ Kc ∩M c, which is again excluded

from our analysis. This completes the proof of the fact that for all i ∈ [d], if R > 0, exactly one between λi

and λdi is greater than zero. As a corollary, we have that the optimal (φ∗
1, . . . , φ

∗
d) satisfies

1− λ∗ = |ρi − λ∗ cosφ∗
i |, for all i ∈ [d],

as required.

(ii) The primal set is strictly feasible, hence we know that R is attained in the dual set, which is enough

to prove existence. As for uniqueness, suppose there exists two optimal Σ1,Σ2 such thatΣS = λ∗AΣ1 + (1− λ∗)Σ′
S

ΣS = λ∗AΣ2 + (1− λ∗)Σ′′
S .

This implies that for all µ ∈ (0, 1)

ΣS = λ∗A(µΣ1 + (1− µ)Σ2) + (1− λ∗)(µΣ′
S + (1− µ)Σ′′

S ),

meaning that µΣ1 + (1 − µ)Σ2 is optimal. By the optimality of Σ1 and Σ2 we must have that Σ′
S and Σ′′

S

are maximally incompatible, which means they must all be singular, as stated in Example 4. Now, observe

that if there exists i ∈ [d] such that Σ′
{i,i+1} ̸= Σ′′

{i,i+1},

µΣ′
{i,i+1} + (1− µ)Σ′′

{i,i+1} =

(
1 ±(2µ− 1)

±(2µ− 1) 1

)
,

which means that µΣ′
S + (1 − µ)Σ′′

S can never be maximally incompatible since µ ∈ (0, 1). This implies

that Σ′
S = Σ′′

S , which in turn implies that φ∗
1 = φ∗

2. As for the continuity of φ∗(θ1, . . . , θd), observe that

1− λ∗ = |ρj − λ∗ cosφ∗
j |, for all j ∈ [d] in point (i) means that there exist {ϵj = ±1}j∈[d] such that

λ∗ =
1− ϵj cos θj
1− ϵj cosφ∗

j

, for all j ∈ [d].

Now, let
{
θ(n) = (θ1,n, . . . , θd,n)

}
n∈N

−→ θ = (θ1, . . . , θd), and consider the associated sequence of optimal{
φ∗
n = (φ∗

1,n, . . . , φ
∗
d,n)

}
n∈N

, meaning that

λ∗n =
1− ϵj,n cos θj,n
1− ϵj,n cosφ∗

j,n

, for all j ∈ [d].

Taking the limit on both sides, since λ∗ is continuous due to Proposition 6 (ii), we get that

λ∗ =
1± cos θj

1± cos
(
limn φ∗

j,n

) , for all j ∈ [d].
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This shows that the limit limn φ
∗
j,n exists, and by uniqueness (i), we can conclude that limn φ

∗
j,n = φ∗

j ,

showing that φ is continuous.

As for (iii), supposing without loss of generality that θ1 = maxi∈[d] θi, with at most θ1 > π/2, observe

that incompatibility is equivalent to having θ1 −
∑d
i=2 θi > 0, hence in order to make λ∗ as big as possible

we should choose ρj = λ∗ cosφ∗
j + (1− λ∗) for all j ∈ {2, . . . , d}, and ρ1 = λ∗ cosφ∗

1 − (1− λ∗). This would

imply that the optimal choice of signs for a general d-cycle is ϵd = (−1,+1Td−1), and this turns out to be

true indeed. To see why, start by considering the case d = 3, and observe that from (ii) we know that there

exists a unique K ⊆ [3] with |K| odd such that∑
|K|odd
i∈K

µK =
∑

|K|odd
i∈Kc

µK .

The possible values of K are {1}, {2}, {3} and {1, 2, 3}, and these are associated to the vectors of signs

(−1, 1, 1),(1,−1, 1), (1, 1,−1) and (−1,−1,−1), respectively. Hence, in order to prove the statement it is

necessary and sufficient to show that K = {1} leads to the optimal λ∗, meaning that λ∗1 ≥ λ∗2 and λ∗1 ≥ λ∗4,

where

λ∗1 =
1 + cos θ1
1 + cosφ∗

1

=
1− cos θ2
1− cosφ∗

2

=
1− cos θ3

1− cos(φ∗
1 − φ∗

2)
,

λ∗2 =
1− cos θ1
1− cos φ̃∗

1

=
1 + cos θ2
1 + cos φ̃∗

2

=
1− cos θ3

1− cos(φ̃∗
2 − φ̃∗

1)
,

λ∗4 =
1 + cos θ1
1 + cos φ̃∗

1

=
1 + cos θ2
1 + cos φ̃∗

2

=
1 + cos θ3

1 + cos(2π − φ̃∗
1 − φ̃∗

2)
.

Now, for λ∗1 < λ∗2 to be true it is necessary to have

cos(φ∗
1 − φ∗

2) < cos(φ̃∗
1 − φ̃∗

2)

cos φ̃∗
1 > 1− 1−cos θ1

1+cos θ1
(1 + cosφ∗

1)

cos φ̃∗
2 < −1 + 1+cos θ2

1−cos θ2
(1− cosφ∗

2),

with (φ∗
1, φ

∗
2), (φ̃

∗
1, φ̃

∗
2) ∈ [0, π]2 that need to simultaneously satisfy

cosφ∗
2 = 1− 1−cos θ2

1+cos θ1
(1 + cosφ∗

1)

cos φ̃∗
1 = 1− 1−cos θ1

1+cos θ2
(1 + cos φ̃∗

2),

and


φ∗
1 ≤ θ1, φ∗

2 ≥ θ2

φ̃∗
1 ≥ θ1, φ̃∗

2 ≤ θ2,

to ensure R(ΣS3) ∈ [0, 1]. This system of inequalities has no solution in (φ̃∗
1, φ̃

∗
2) for fixed (φ∗

1, φ
∗
2) and

θ1 > θ2. The same reasoning shows that λ∗1 < λ∗4 can never be satisfied as well, showing that the optimal

choice of signs for d = 3 is indeed ϵ3 = (−1,+1,+1). For general d, it is sufficient to proceed by induction:

indeed, suppose that ϵj = (−1,+1Tj−1) for all j ∈ {3, . . . , d − 1}, and consider λ∗ = λ∗(θd) as a function

of θd, for fixed θ1, . . . , θd−1. This function is continuous over [0, θ1 −
∑d−1
i=2 θi), because is the restriction of
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λ∗ = 1−R(ΣSd), which is continuous by Proposition 6 (ii), onto the last coordinate. Now, λ∗(θd) uniquely

identifies a vector of signs for varying θd ∈ [0, θ1 −
∑d−1
i=2 θi), call it ϵ(θd), taking values in {+1,−1}d. This

vector is unique because we supposed the cycle to be incompatible, hence either g(φi) or h(φi) in the KKT

conditions has a strictly positive optimal gap, so that there exists a unique µK ̸= 0. We will show that this

vector is constant for all θd ∈ [0, θ1 −
∑d−1
i=2 θi), that is to say that each component of ϵ(θd) is continuous in

θd ∈ [0, θ1 −
∑d−1
i=2 θi). Indeed, consider without loss of generality the first component of ϵ(θd), and suppose

by contradiction that ϵ(θd)1 is not continuous in θ̃d. This implies that there exists a sequence of angles {θd,n}
converging to θ̃d such that

lim
n→+∞

ϵ(θd,n)1 = ϵlim = −ϵ(θ̃d)1.

Without loss of generality, assume ϵlim = +1 and ϵ(θ̃d)1 = −1. But we must have by continuity

1 + cos θ1
1 + cosφ∗

1

=
1− ϵ(θ̃d)1 cos θ1

1− ϵ(θ̃d)1 cosφ∗
1

= λ∗(θd) = lim
n→+∞

λ∗(θd,n) = lim
n→+∞

1− ϵ(θd,n)1 cos θ1
1− ϵ(θd,n)1 cosφ∗

1,n

=
1− cos θ1 lim

n→+∞
ϵ(θd,n)1

1− cos

(
lim

n→+∞
φ∗
1,n

)
lim

n→+∞
ϵ(θd,n)1

=
1− ϵlim cos θ1
1− ϵlim cosφ∗

1

=
1− cos θ1
1− cosφ∗

1

,

where cosφ∗
1,n and cosφ∗

1 are the (1, 2)-th entries of the optimal matrix of the dual in θd,n and θ̃d, respectively.

This implies that λ∗(θ̃d) admits both representations, one with the plus sign, and one with the minus sign,

and this can happen only if the cycle is compatible, which cannot be the case for θ̃d ∈ [0, θ1 −
∑d−1
i=2 θi)

since θ1 >
∑d
i=2 θi. This means that ϵ(θd)j is continuous for all j ∈ [d] for varying θd ∈ [0, θ1 −

∑d−1
i=2 θi),

which implies that the vector ϵ(θd) is constant on [0, θ1−
∑d−1
i=2 θi), so that the behaviour of ϵ(θd) is uniquely

determined by ϵ(0). But we do know that

ϵ(0) = (ϵd−1, ϵ(0)d) = (−1,+1Td−2, ϵ(0)d)

due to Proposition 18 and the induction step: this, together with the fact that ϵ(0)d = +1 in order to make

Σ′
S maximally incompatible, completes the proof.

7.5 Proofs for Section 5.2

Proof of Theorem 12. Formally, we are looking at

H0 : R(ΣS) = 0 vs. H1(ρ) : R(ΣS) > ρ,

for fixed ρ > 0, and we aim at finding the smallest of such ρ’s for which we can have non-trivial power.

We prove the result by considering the two cases d ≥ 42 and d < 42 separately. For the first of these, we

specialise ΣS to be

ΣS =

{(
Id P

PT Id

)
,

(
Id −P

−PT Id

)
,

(
Id βId

βId Id

)}
,
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and since R(ΣS) ≥ 3
4d

∑d
j=1(σ

2
j (P )−

1−β
2 )+ by Proposition 13, it is sufficient to study the testing problems

H ′
0 :

d∑
j=1

(θi)+ ≤ 0 vs. H ′
1(ρ

′) :

d∑
j=1

(θi)+ > ρ′,

where θi = σ2
j (P )−

1−β
2 , find the smallest ρ′ for which we have non-trivial power, and use the relationship

ρ = 3
4dρ

′. More precisely, focusing on the latter testing problem, we want to lower bound the minimax

testing risk

ρ∗(nS, η) := inf

{
ρ > 0 : ∃φS ∈ ΨS : sup

PS,0∈P̄S(0)

P⊗nS
S,0 (φS = 1) + sup

PS,1∈PS(ρ)

P⊗nS
S,1 (φS = 0) ≤ η

}

where P̄S(0) = {PS : Corr(PS) = ΣS and R(ΣS) = 0}, PS(ρ) = {PS : Corr(PS) = ΣS and R(ΣS) > ρ}, and
ΨS is the set of collection of tests coherent with S. To this aim, we start by defining two prior distributions

µ0, µ1 for P . First, there exist two measures ν0, ν1 with matching moments up to the M -th order such that

I. supp (ν0) ⊆ [−b, 0], supp (ν1) ⊆ [−b, 0] ∪
{

b
4M2

}
II. ν1

({
b

4M2

})
≥ 1

2

III. ∀k ∈ {0, 1, . . . ,M} :
∫
zkν0( dz) =

∫
zkν1( dz).

This is proved in Juditsky and Nemirovski (2002) using ideas from the theory of best polynomial approxi-

mation. A different, but closely related version, was proved in Cai and Low (2011) using similar techniques.

Such prior distributions have been extensively used in the minimax literature in the last decade, and led

to optimal, or nearly-optimal, lower bounds in many problems of interest such as optimal estimation of

nonsmooth functionals (Cai and Low, 2011; Jiao et al., 2016; Thépaut and Verzelen, 2024), testing MCAR

in a fully nonparametric setting (Berrett and Samworth, 2023), and testing convex hypothesis (Blanchard

et al., 2018). Let U(d) denote the (normalised) Haar measure over the Lie group of orthogonal matrices

SO(d) = {U ∈ Rd,d : UTU = UUT = Id}, and let ν0, ν1 the distributions with matching moments up to

the order M defined above. Calling δ0 the Dirac measure in zero, we define µi to be the distribution of

P = UTΛU , where U ∼ U(d), and Λ = diag(σ1:d), with σ1:d ∼ ν
⊗⌈d/2⌉
i ⊗ δ

⊗(d−⌈d/2⌉)
0 , for i ∈ {0, 1}. Observe

now that the support of µ1 also contains elements in (PS(ρ))
C . In order to overcome this, we will consider

the conditional measure µ1|ξ, where ξ is the event

ξ =

{
d∑
i=1

1{µi=b/4M2} ≥ d

3

}
,

which ensures that µ1|ξ is supported on the alternative. Now, given P , we use the shorthand

N⊗nS
S ≡ N⊗nS

S (P ) =

(
N⊗n1

(
0,

(
Id P

PT Id

))
, N⊗n2

(
0,

(
Id −P

−PT Id

))
, N⊗n3

(
0,

(
Id βId

βId Id

)))
.
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The marginal distribution of the data when P is generated according to µ1|ξ is then given by the mixture

distribution

Eµ1|ξN
⊗nS
S =

(
Eµ1|ξN

⊗n1

(
0,

(
Id P

PT Id

))
,Eµ1|ξN

⊗n2

(
0,

(
Id −P

−PT Id

))
, N⊗n3

(
0,

(
Id βId

βId Id

)))
.

Similarly, the marginal distribution of the data when P is generated according to µi is then given by the

mixture distribution

EµiN
⊗nS
S =

(
EµiN

⊗n1

(
0,

(
Id P

PT Id

))
,EµiN

⊗n2

(
0,

(
Id −P

−PT Id

))
, N⊗n3

(
0,

(
Id βId

βId Id

)))
,

for i ∈ {0, 1}. For every test collection φS ∈ ΨS, and for prior distributions µ0, µ1|ξ, we can bound the total

error probability as

R(nS, ρ
′) = sup

PS,0∈P̄S(0)

P⊗nS
S,0 (φS = 1) + sup

PS,1∈PS(ρ)

P⊗nS
S,1 (φS = 0)

≥ Eµ0N
⊗nS
S (φS = 1) + Eµ1|ξN

⊗nS
S (φS = 0)

= Eµ0N
⊗nS
S (φS = 1) + 1−

Eµ1N
⊗nS
S ({φS = 1} ∩ ξ)

µ1(ξ)

≥ Eµ0N
⊗nS
S (φS = 1) + 1− 10

9
Eµ1N

⊗nS
S (φS = 1)

≥ Eµ0N
⊗nS
S (φS = 1) +

10

9
Eµ1

N⊗nS
S (φS = 0)− 1

9

≥ Eµ0
N⊗nS

S (φS = 1) + Eµ1
N⊗nS

S (φS = 0)− 1

9

≥ 1− TV
(
Eµ0

N⊗nS
S ,Eµ1

N⊗nS
S

)
− 1

9
.

The second inequality follows from Hoeffding’s inequality, which ensures that for all d ≥ 42,

µ1 (ξ) ≥
9

10
,

since µ1({b/4M2}) ≥ 1/2 by II. This shows that it is now sufficient to control the total variation distance

between the marginals of N⊗nS
S with respect to the unconditional priors µ0, µ1 by finding b/4M2 such that

TV
(
Eµ0

N⊗nS
S ,Eµ1

N⊗nS
S

)
≤ 1/2− 1/9. This would imply that R(nS, ρ

′) ≥ 1/2, and would lead to

ρ′ =
d

3

b

4M2
,

where the extra d/3 factor comes from conditioning on the event ξ. Hence, let us now focus on controlling

TV
(
Eµ0N

⊗nS
S ,Eµ1N

⊗nS
S

)
. We have

TV
(
Eµ0

N⊗nS
S ,Eµ1

N⊗nS
S

)
= TV

{(
Eµ0N

⊗n1

(
0,

(
Id P

PT Id

))
,Eµ0N

⊗n2

(
0,

(
Id −P

−PT Id

))
, N⊗n3

(
0,

(
Id βId

βId Id

)))
,
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(
Eµ1N

⊗n1

(
0,

(
Id P

PT Id

))
,Eµ1N

⊗n2

(
0,

(
Id −P

−PT Id

))
, N⊗n3

(
0,

(
Id βId

βId Id

)))}

= TV

{(
Eµ0N

⊗n1

(
0,

(
Id P

PT Id

))
,Eµ0N

⊗n2

(
0,

(
Id −P

−PT Id

)))
,(

Eµ1N
⊗n1

(
0,

(
Id P

PT Id

))
,Eµ1N

⊗n2

(
0,

(
Id −P

−PT Id

)))}

≤ TV

{
Eµ0N

⊗n1

(
0,

(
Id P

PT Id

))
,Eµ1N

⊗n1

(
0,

(
Id P

PT Id

))}

+TV

{
Eµ0

N⊗n2

(
0,

(
Id −P

−PT Id

))
,Eµ1

N⊗n2

(
0,

(
Id −P

−PT Id

))}
.

Dealing with such µ0, µ1 is not straightforward, due to the presence of the integrals with respect to the Haar

measure. Nonetheless, following similar ideas as in Thépaut and Verzelen (2024), we upper bound the total

variance distance above using the following two lemmata, where we suppose P to be symmetric.

Lemma 15. Let P be symmetric, with spectral decomposition P = UTΛU . Let U(d) denote the (normalised)

Haar measure over the Lie group of orthogonal matrices SO(d) = {U ∈ Rd,d : UTU = UUT = Id}, and let

ν0, ν1 the distributions with matching moments up to the orderM defined above. Denote by µi the distribution

of UTΛU , where U ∼ U(d), and Λ = diag(σ1:d), with σ1:d ∼ ν
⊗⌈d/2⌉
i ⊗ δ

⊗(d−⌈d/2⌉)
0 . Then

TV

{
Eµ0N

⊗n

(
0,

(
Id P

PT Id

))
,Eµ1N

⊗n

(
0,

(
Id P

PT Id

))}

≤ ⌈d/2⌉TV

{
Eπ̃0

{
N⊗n

(
02d,

(
Id ηuuT

ηuuT Id

))}
,Eπ̃1

{
N⊗n

(
02d,

(
Id η′u′u′T

η′u′u′T Id

))}}
,

where π̃0 (resp. π̃1) is the distribution of ηuuT (resp. η′u′u′T ), where η ∼ ν0 (resp. η′ ∼ ν1) and u =

(ud′ ,0
T
d−d′) (resp. u

′ = (u′d′ ,0
T
d−d′)) is such that ud′ (resp u

′
d′) is a uniform sample from the d′-dimensional

sphere Sd′−1 = {x ∈ Rd′ : ∥x∥2 = 1}, with d′ = d+ 1− ⌈d/2⌉.

Lemma 16. With the same notation as above, then

TV2

{
Eπ̃0

{
N⊗n

(
02d,

(
Id ηuuT

ηuuT Id

))}
,Eπ̃1

{
N⊗n

(
02d,

(
Id η′u′u′T

η′u′u′T Id

))}}

≤
∞∑

k=M+1

(
k + n− 1

n− 1

)
E[u2k1 ]

(∫
ηk[ν0(dη)− ν1(dη)]

)2

.

Applying these lemmata, it follows that

TV

{
Eµ0

N⊗n1

(
0,

(
Id P

PT Id

))
,Eµ1

N⊗n1

(
0,

(
Id P

PT Id

))}

≤ ⌈d/2⌉TV

{
Eπ̃0

{
N⊗n1

(
02d,

(
Id ηuuT

ηuuT Id

))}
,Eπ̃1

{
N⊗n1

(
02d,

(
Id η′u′u′T

η′u′u′T Id

))}}
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≤ ⌈d/2⌉

√√√√ ∞∑
k=M+1

(
k + n1 − 1

n1 − 1

)
E[u2k1 ]

(∫
ηk[ν0(dη)− ν1(dη)]

)2

,

where the first inequality comes from Lemma 15, and the second from Lemma 16. Here u1 is the first

coordinate of a uniform random vector in the d′-dimensional unit sphere, and ν0, ν1 are the distributions

with matching moments up the order M defined above. Now, observe that u21
d
= Z2

1/
∑d′

i=1 Z
2
i where

Zi
i.i.d.∼ N(0, 1), due to the fact that the standard normal distribution is isotropic. Hence u21 ∼ Beta(d

′−1
2 , 12 )

since if X ∼ χ2(α) and Y ∼ χ2(β) are independent, then X
X+Y ∼ Beta

(
α
2 ,

β
2

)
. It follows that

E[u2k1 ] =

∫ 1

−1

u2k(1− u2)
d′−3

2

B(d
′−1
2 , 12 )

du =

∫ 1

0

vk−
1
2 (1− v)

d′−1
2 −1

B(d
′−1
2 , 12 )

dv

=
B(d

′−1
2 , k + 1

2 )

B(d
′−1
2 , 12 )

=
Γ(k + 1

2 )

Γ( 12 )

Γ(d
′

2 )

Γ(d
′

2 + k)
.

Moreover (∫
ηk[ν0(dη)− ν1(dη)]

)2

≤
(
bk
(
1 +

1

4kM2k

))2

≤ 4b2k.

If we choose b2 = d′

4n , we have

∞∑
k=M+1

(
k + n− 1

n− 1

)
E[u2k1 ]

(∫
ηk[ν0(dη)− ν1(dη)]

)2

≤ 4

∞∑
k=M+1

(
k + n− 1

n− 1

)
Γ(k + 1

2 )

Γ( 12 )

Γ(d
′

2 )

Γ(d
′

2 + k)
b2k

= 4

∞∑
k=M+1

Γ(n+ k)

Γ(n)Γ(k + 1)

Γ(k + 1
2 )

Γ( 12 )

Γ(d
′

2 )

Γ(d
′

2 + k)
b2k

= 4

∞∑
k=M+1

Γ(k + 1
2 )

Γ(k + 1)Γ( 12 )

Γ(d
′

2 )

Γ(d
′

2 + k)

Γ(n+ k)

Γ(n)

(d′)k

4knk

= 4

∞∑
k=M+1

Γ(k + 1
2 )

Γ(k + 1)Γ( 12 )

(d
′

2 )
kΓ(d

′

2 )

Γ(d
′

2 + k)

Γ(n+ k)

nkΓ(n)

1

2k

≤ 4

∞∑
k=M+1

(d
′

2 )
kΓ(d

′

2 )

Γ(d
′

2 + k)

Γ(n+ k)

nkΓ(n)
2−k ≤ 4 · 2−(M+1) = 2−(M−1).

The second inequality follows from the fact that
Γ(k+ 1

2 )

Γ(k+1)Γ( 1
2 )

≤ 1, while the third one follows from the fact

that
(d2 )

kΓ(d2 )

Γ(d2 + k)

Γ(n+ k)

nkΓ(n)
≤ 1.

Indeed, writing ψ for the digamma function, the function x 7→ log akΓ(a)
Γ(a+k) has derivative ψ(a)−ψ(a+k)+k/a >

0, and is therefore increasing. Thus, whenever n ≥ d/2 ≥ d′/2 the inequality follows. Summing up, if we set
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b/4M2 = d/{4(n1 ∧ n2)}, we have that

TV
(
Eµ0N

⊗nS
S ,Eµ1N

⊗nS
S

)
≤ TV

{
Eµ0N

⊗n1

(
0,

(
Id P

PT Id

))
,Eµ1N

⊗n1

(
0,

(
Id P

PT Id

))}

+TV

{
Eµ0N

⊗n2

(
0,

(
Id −P

−PT Id

))
,Eµ1N

⊗n2

(
0,

(
Id −P

−PT Id

))}
≤ 2⌈d/2⌉2−

M−1
2 ≤ (d+ 1)2−

M−1
2 ,

which is upper bounded by 1/2− 1/9 if and only if

M > 2
log(d+ 1)− log(1/2− 1/9)

log 2
+ 1.

Hence, this shows that

b

4M2
≳

√
d

(n1 ∧ n2) log4 d

is sufficient to have TV
(
Eµ0N

⊗nS
S ,Eµ1N

⊗nS
S

)
≤ 1/2 − 1/9, which implies that R(nS, ρ

′) = R(nS,
d
3

b
4M2 ) ≥

1/2. This allows us to conclude that

ρ∗ ≥ 3

4d
ρ′ =

b

16M2
≳

√
d

(n1 ∧ n2) log4 d
.

We finally turn to the simpler case d < 42 and show that testing

H0 : R(ΣS) = 0 vs. H1(ρ) : R(ΣS) > ρ,

requires at least a separation of the order
√
1/(n1 ∧ n2). To this aim, we consider ΣS = {I2d +∆, I2d, I2d},

with

∆ij =

δ, if (i, j) ∈ {(1, 2), (2, 1)}

0, otherwise,

and show that R(ΣS) ≥ δ/2. This follows from the fact that X̃S = {Θ1 − 1
2I2d,Θ2 − 1

2I2d,−
1
2I2d}, where

Θ1 =


+ 3d

4 − 3d
4

− 3d
4 + 3d

4

O2,2d−2

O2d−2,2 O2d−2

 and Θ2 =


+ 3d

4 + 3d
4

+ 3d
4 + 3d

4

O2,2d−2

O2d−2,2 O2d−2

,

is feasible as X̃S + X̃0
S = {Θ1,Θ2,O2d} and A∗X̃S is diagonal with tr(A∗X̃S) = 0. We then bound the total

error probability by choosing

P⊗nS
S,0 =

(
N⊗n1(02d, I2d), N

⊗n2(02d, I2d), N
⊗n3(02d, I2d)

)
∈ P̄S(0),
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and

P⊗nS
S,1 =

(
N⊗n1(02d, I2d +∆), N⊗n2(02d, I2d), N

⊗n3(02d, I2d)
)
∈ PS(δ),

and using the fact that

R(nS, δ) = inf
φS

{
sup

PS,0∈P̄S(0)

P⊗nS
S,0 (φ− S = 1) + sup

PS,1∈PS(δ)

P⊗nS
S,1 (φ− S = 0)

}
≥ 1− TV

(
P⊗nS
S,0 , P⊗nS

S,1
)

≥ 1− TV
(
N⊗n1(02d, I2d), N

⊗n1(02d, I2d +∆)
)
.

Now, if P0 := N⊗n1 (02, I2) , P1 := N⊗n1

(
02,

(
1 δ

δ 1

))
, we have

4TV
(
N⊗n1(02d, I2d), N

⊗n1(02d, I2d +∆)
)2

= 4TV(P0, P1)
2 ≤ χ2 (P0, P1) =

∫ (
dP1

dP0

)2

dP0 − 1

=
1

cos2n1 δ

∫  n1∏
i=1

exp

−1

2
⟨

(
xi

yi

)(
xi

yi

)T
,

2

cos2 δ

(
1 sin δ

sin δ 1

)
− 2I2⟩


2

dP0 − 1

= {(2− cos2 δ)2 − 4 sin2 δ}−n1/2 − 1

≤ (1− δ2)−n1/2 − 1 ≤ en1δ
2/2 − 1,

from which we see that TV (P0, P1) ≤ 1/2 if δ ≤
√
2 log 2/n1. The same holds true if we switch the

roles of n1 and n2. The above bound on the total variation distance demonstrates that we may choose

δ =
√

2 log 2/n1 ∧ n2, and hence that we have

ρ∗ ≥ δ =

√
2 log 2

n1 ∧ n2
,

as claimed.

Proof of Lemma 15. Let φ(z) denote the density of the d-dimensional Gaussian law with respect to the

Lebesgue measure. By the triangle inequality we have that

TV

{
Eµ0

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}
,Eµ1

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}}

≤
⌈d/2⌉−1∑
j=0

TV

{
Eπj

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}
,Eπj+1

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}}
,

where πj is distribution of UTΛU , where U ∼ U(d) is common for all πj , while Λ = diag(σ1:d), with

σ1:d ∼ ν
⊗(⌈d/2⌉−j)
0 ⊗ ν⊗j1 ⊗ δ

⊗⌊d/2⌋
0 , for j ∈ {0, . . . , ⌈d/2⌉ − 1}. Observe that π0 = µ0 and π⌈d/2⌉ = µ1, so

that this inequality essentially interpolates µ0 and µ1 with ⌈d/2⌉ intermediate measures such that, for every

j ∈ {0, . . . , ⌈d/2⌉ − 1}, πj differs from πj+1 only for the distribution of σj in Λ. Now, consider a generic

j ∈ {0, . . . , ⌈d/2⌉− 1} and define S := {1, . . . , ⌈d/2⌉− j − 1, ⌈d/2⌉− j +1, . . . , ⌈d/2⌉}. We will show that we
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can bound each term of the summation above by

TV

{
Eπ̃0

{
N⊗n

(
02d,

(
Id ηuuT

ηuuT Id

))}
,Eπ̃1

{
N⊗n

(
02d,

(
Id η′u′u′T

η′u′u′T Id

))}}
,

with π̃0, π̃1 defined in the statement, and this would conclude the proof. To this aim, observe that if(
X

Y

)
∼ N

(
02d,

(
Id UTΛU

UTΛU Id

))
,

then 
X|Y ∼ N(UTΛUY, Id − UTΛ2U)

Y ∼ N(0d, Id).

This allows us to write

TV0 := TV

{
Eπj

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}
,Eπj+1

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}}

=

∫ n∏
i=1

φ(yi)

∣∣∣∣Eπj

{
n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − UTΛUyi))

}

− Eπj+1

{
n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − UTΛUyi))

}∣∣∣∣dxdy,
where dx = dx1 . . . dxn, and similarly for dy. Now, let US be the restriction of U to its columns in S.

By definition of πj (resp. πj+1), we can write UTΛU as UTΛU = ηuuT + UTS diag(σ−j)US where σ−j ∼
ν
⊗(⌈d/2⌉−j−1)
0 ⊗ δ0 ⊗ ν⊗j1 ⊗ δ

⊗d−⌈d/2⌉
0 , where δ0 is the Dirac measure in 0. Write π for the distribution of

(US ,diag (σ−j)) and f0 (resp. f1) for the conditional distribution of (u, η) given (US ,diag (σ−j)): this is

given by η ∼ ν0 (resp. ν1), while u|US is sampled uniformly from Sd−1 ∩ U⊥
S , i.e. the intersection between

the d-dimensional unit sphere Sd−1 := {x ∈ Rd : ∥x∥2 = 1} and the orthogonal complement of the columns

spanned by US . First, observe that dim(Sd−1 ∩ U⊥
S ) = d + 1 − ⌈d/2⌉. Secondly, observe that for every

measurable function h,

Eh(P ) =
∫
h(P )πj(dP ) =

∫
h(P )f0(du, dη)π (dUS , dσ−j) ,

and similarly for πj+1. This allows to bound the TV distance above one step further as

TV0 ≤
∫ n∏

i=1

φ(yi)

∣∣∣∣ ∫ n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − UTΛUyi)f0(du, dη)

−
∫ n∏

i=1

|I − U ′TΛ′2U ′|−1/2φ((I − U ′TΛ′2U ′)−1/2(xi − U ′TΛ′U ′yi)f1(du
′, dη′)

∣∣∣∣π (dUS , dσ−j) dxdy
=

∫ n∏
i=1

φ(yi)

(∫ ∣∣∣∣ ∫ n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − UTΛUyi)f0(du, dη)
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−
∫ n∏

i=1

|I − U ′TΛ′2U ′|−1/2φ((I − U ′TΛ′2U ′)−1/2(xi − U ′TΛ′U ′yi)f1(du
′, dη′)

∣∣∣∣dx)π (dUS , dσ−j) dy,
where in the first step we used Jensen’s inequality, bringing the common π outside the absolute value, while

in the last step we used Fubini-Tonelli theorem with positive integrand. Consider now the innermost integral∫ ∣∣∣∣ ∫ n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − UTΛUyi)f0(du, dη)

−
∫ n∏

i=1

|I − U ′TΛ′2U ′|−1/2φ((I − U ′TΛ′2U ′)−1/2(xi − U ′TΛ′U ′yi)f1(du
′, dη′)

∣∣∣∣dx
=

∫ ∣∣∣∣ ∫ n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − ηuuT yi −
∑
k ̸=j

σkuku
T
k yi)f0(du, dη)

−
∫ n∏

i=1

|I − U ′TΛ′2U ′|−1/2φ((I − U ′TΛ′2U ′)−1/2(xi − η′u′u′T yi −
∑
k ̸=j

σkuku
T
k yi)f1(du

′, dη′)

∣∣∣∣dx
for fixed US , σ−j , y. This can be simplified to

∫ ∣∣∣∣ ∫ n∏
i=1

|I − UTΛ2U |−1/2φ((I − UTΛ2U)−1/2(xi − ηuuT yi))f0(du, dη)

−
∫ n∏

i=1

|I − U ′TΛ′2U ′|−1/2φ((I − U ′TΛ′2U ′)−1/2(xi − η′u′u′T yi))f1(du
′, dη′)

∣∣∣∣dx
after the change of variable x′i = xi −

∑
k ̸=j σkuku

T
k yi, for all i ∈ [n]. Now, observe that, under f0, we have

(I − UTΛ2U)−1/2 =
1√

1− η2
uuT +

∑
i̸=j

1√
1− σ2

i

uiu
T
i ,

which yields

|I − UTΛ2U |−1/2 =
1√

1− η2
∏
i ̸=j

√
1− σ2

i

;

similarly under for (I −U ′TΛ′2U ′)−1/2 under π1, with η
′, u′ in place of η, u. Perform the change of variables

xi =

I −∑
k ̸=j

σ2
kuku

T
k

1/2

zi,

for all i ∈ [n], whose Jacobian is

n∏
i=1

∣∣∣∣∣∣I −
∑
k ̸=j

σ2
kuku

T
k

∣∣∣∣∣∣
1/2

=

n∏
i=1

∏
k ̸=j

√
1− σ2

k.
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We get

∫ ∣∣∣∣ ∫ n∏
i=1

1√
1− η2

φ

∑
i ̸=j

uiu
T
i +

1√
1− η2

uuT

 zi −
η√

1− η2
uuT yi

 f0(du, dη)

−
∫ n∏

i=1

1√
1− η′2

φ

∑
i ̸=j

uiu
T
i +

1√
1− η′2

u′u′T

 zi −
η′√

1− η′2
u′u′T yi

 f1(du
′, dη′)

∣∣∣∣dx
=

∫ ∣∣∣∣ ∫ n∏
i=1

1√
1− η2

φ

∑
i ̸=j

uiu
T
i +

1√
1− η2

uuT

 (zi − ηuuT yi)

 f0(du, dη)

−
∫ n∏

i=1

1√
1− η′2

φ

∑
i ̸=j

uiu
T
i +

1√
1− η′2

u′u′T

 (zi − η′u′u′T yi)

 f1(du
′, dη′)

∣∣∣∣dx
=

∫ ∣∣∣∣ ∫ n∏
i=1

1√
1− η2

φ
((
I − η2uuT

)−1/2
(zi − ηuuT yi)

)
f0(du, dη)

−
∫ n∏

i=1

1√
1− η′2

φ
((
I − η′2u′u′T

)−1/2
(zi − η′u′u′T yi)

)
f1(du

′, dη′)

∣∣∣∣dx
=

∫ ∣∣∣∣ ∫ n∏
i=1

∣∣I − η2uuT
∣∣−1/2

φ
((
I − η2uuT

)−1/2
(zi − ηuuT yi)

)
f0(du, dη)

−
∫ n∏

i=1

∣∣I − η′2u′u′T
∣∣−1/2

φ
((
I − η′2u′u′T

)−1/2
(zi − η′u′u′T yi)

)
f1(du

′, dη′)

∣∣∣∣dx
= TV

{
Ef0{N⊗n(ηuuT y, I − (ηuuT )(ηuuT )T )},Ef1{N⊗n(η′u′u′T y, I − (η′u′u′T )(η′u′u′T )T )}

}
.

Coming back to the initial TV distance we wish to bound, we get that

TV

{
Eπj

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}
,Eπj+1

{
N⊗n

(
02d,

(
Id UTΛU

UTΛU Id

))}}

≤
∫

TV

{
Ef0{N⊗n(ηuuT y, I − (ηuuT )(ηuuT )T )},Ef1{N⊗n(η′u′u′T y, I − (η′u′u′T )(η′u′u′T )T )}

}
φ(y)π (dUS , dσ−j) dy

=

∫
TV

{
Ef0

{
N⊗n

(
02d,

(
Id ηuuT

ηuuT Id

))}
,Ef1

{
N⊗n

(
02d,

(
Id η′u′u′T

η′u′u′T Id

))}}
π (dUS , dσ−j)

= TV

{
Eπ̃0

{
N⊗n

(
02d,

(
Id ηuuT

ηuuT Id

))}
,Eπ̃1

{
N⊗n

(
02d,

(
Id η′u′u′T

η′u′u′T Id

))}}
,

where π̃0 (resp. π̃1) is the distribution of ηuuT (resp. η′u′u′T ), where η ∼ ν0 (resp. η′ ∼ ν1) and u

(resp. u′) is sampled uniformly from a d′-dimensional unit sphere embedded in Rd, with d′ = d+ 1− ⌈d/2⌉.
Now, since the Gaussian distribution is invariant under orthogonal transformation, we might assume that

u = (ud′ ,0
T
d−d′), with ud′ uniformly sampled from the d′-dimensional sphere Sd′−1, and the result follows.
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Proof of Lemma 16. Consider∫ n∏
i=1

φ(yi)

∣∣∣∣ ∫ n∏
i=1

1√
1− η2

φ
((
I − η2uuT

)−1/2
(zi − ηuuT yi)

)
[π̃0(du, dη)− π̃1(du, dη)]

∣∣∣∣dzdy,
and observe that (

I − η2uuT
)−1

= I +
η2

1− η2
uuT .

Hence,

φ
((
I − η2uuT

)−1/2
(zi − ηuuT yi)

)
= (2π)−

d
2 exp

{
−1

2
(zi − ηuuT yi)

T

(
I +

η2

1− η2
uuT

)
(zi − ηuuT yi)

}
= (2π)−

d
2 exp

{
−1

2
zTi zi −

1

2

η2

1− η2
zTi uu

T zi −
1

2
η2yTi uu

T yi −
1

2

η4

1− η2
yTi uu

T yi

+ηzTi uu
T yi +

η3

1− η2
zTi uu

T yi

}
= (2π)−

d
2 exp

{
−1

2
zTi zi −

1

2

η2

1− η2
zTi uu

T zi −
1

2

η2

1− η2
yTi uu

T yi +
η

1− η2
zTi uu

T yi

}
= φ(zi) exp

{
−1

2

η2

1− η2
zTi uu

T zi −
1

2

η2

1− η2
yTi uu

T yi +
η

1− η2
zTi uu

T yi

}

= φ(zi) exp

−1

2
⟨

(
η2

1−η2uu
T − η

1−η2uu
T

− η
1−η2uu

T η2

1−η2uu
T

)
,

(
zi

yi

)(
zi

yi

)T
⟩

 =: φ(zi)g(η, u, zi, yi).

Hence,

TV1 :=

∫ n∏
i=1

φ(yi)

∣∣∣∣ ∫ n∏
i=1

1√
1− η2

φ
((
I − η2uuT

)−1/2
(zi − ηuuT yi)

)
[π̃0(du, dη)− π̃1(du, dη)]

∣∣∣∣dxdy
=

∫ n∏
i=1

φ(zi)φ(yi)

∣∣∣∣ ∫ n∏
i=1

1√
1− η2

g(η, u, zi, yi)[π̃0(du, dη)− π̃1(du, dη)]

∣∣∣∣dzdy
≤

√√√√∫ n∏
i=1

φ(zi)φ(yi)

[ ∫ n∏
i=1

1√
1− η2

g(η, u, zi, yi)[π̃0(du, dη)− π̃1(du, dη)]

]2
dzdy,

where we used Cauchy-Schwartz inequality in the last step. Thus, it follows that

TV 2
1 ≤

∫ n∏
i=1

φ(zi)φ(yi)
∑
k=0,1

∑
j=0,1

(−1)k+j

(∫ ∫ n∏
i=1

1√
1− η2

√
1− η′2

g(η, u, zi, yi)g(η
′, u′, zi, yi)π̃k(du, dη)π̃j(du

′, dη′)

)
dzdy

=
∑
k=0,1

∑
j=0,1

(−1)k+j
∫ ∫

(1− η2)−n/2(1− η′2)−n/2

(∫ n∏
i=1

g(η, u, zi, yi)g(η
′, u′, zi, yi)φ(zi)φ(yi)dzdy

)
π̃k(du, dη)π̃j(du

′, dη′)
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=
∑
k=0,1

∑
j=0,1

(−1)k+j
∫ ∫

(1− η2)−n/2(1− η′2)−n/2

(
n∏
i=1

∫
g(η, u, zi, yi)g(η

′, u′, zi, yi)φ(zi)φ(yi)dzidyi

)
π̃k(du, dη)π̃j(du

′, dη′),

where in the second equality we used Fubini-Tonelli’s theorem to change the order of integration, and Fubini’s

theorem to factorise independent integrands in the last one. Let us consider a generic∫
g(η, u, zi, yi)g(η

′, u′, zi, yi)φ(zi)φ(yi)dzidyi,

bearing in mind that u = (ud′ ,0
T
d−d′), u

′ = (u′d′ ,0
T
d−d′), with ud′ , u

′
d′ being independent and uniform samples

from the d′-dimensional unit sphere, where d′ = d+ 1− ⌈d/2⌉. We have∫
g(η, u, zi, yi)g(η

′, u′, zi, yi)φ(zi)φ(yi)dzidyi

=

∫
(2π)−d exp

{
−1

2
⟨

(
η2

1−η2uu
T − η

1−η2uu
T

− η
1−η2uu

T η2

1−η2uu
T

)
+

+

(
η′2

1−η′2u
′u′T − η′

1−η′2u
′u′T

− η′

1−η′2u
′u′T η′2

1−η′2u
′u′T

)
+

(
Id Od

Od Id

)
,

(
zi

yi

)(
zi

yi

)T
⟩


=

∫
(2π)−d exp

−1

2
⟨

(
Id +

η2

1−η2uu
T + η′2

1−η′2u
′u′T − η

1−η2uu
T − η′

1−η′2u
′u′T

− η
1−η2uu

T − η′

1−η′2u
′u′T Id +

η2

1−η2uu
T η′2

1−η′2u
′u′T

)
,

(
zi

yi

)(
zi

yi

)T
⟩


=:

∫
(2π)−d exp

−1

2
⟨K,

(
zi

yi

)(
zi

yi

)T
⟩

 = |K|−1/2.

Now K takes the form

K =

(
Id +

η2

1−η2uu
T + η′2

1−η′2u
′u′T − η

1−η2uu
T − η′

1−η′2u
′u′T

− η
1−η2uu

T − η′

1−η′2u
′u′T Id +

η2

1−η2uu
T η′2

1−η′2u
′u′T

)
.

It is straightforward to show that

|K| = (1− (uTu′)2ηη′)2

(1− η2)(1− η′2)

d
=

(1− u21ηη
′)2

(1− η2)(1− η′2)
,

but, since it requires some lengthy algebraic computations, we defer its proof to Lemma 17 below. Now, it

follows that

TV 2
1 ≤

∑
k=0,1

∑
j=0,1

(−1)k+j
∫ ∫

(1− η2)−n/2(1− η′2)−n/2

(
n∏
i=1

∫
g(η, u, zi, yi)g(η

′, u′, zi, yi)φ(zi)φ(yi)dzidyi

)
π̃k(du, dη)π̃j(du

′, dη′)
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=
∑
k=0,1

∑
j=0,1

(−1)k+j
∫ ∫

(1− η2)−n/2(1− η′2)−n/2|K|−n/2π̃k(du, dη)π̃j(du′, dη′)

=
∑
k=0,1

∑
j=0,1

(−1)k+j
∫ ∫

1

(1− u21ηη
′)n

π̃k(du, dη)π̃j(du
′, dη′)

=

∞∑
h=0

∑
k=0,1

∑
j=0,1

(−1)k+j
∫ ∫ (

h+ n− 1

n− 1

)
u2h1 ηhη′hπ̃0(du, dη)π̃1(du

′, dη′)

=

∞∑
k=0

(
k + n− 1

n− 1

)
E[u2k1 ]

(∫
ηk[ν0(dη)− ν1(dη)]

)2

=

∞∑
k=M+1

(
k + n− 1

n− 1

)
E[u2k1 ]

(∫
ηk[ν0(dη)− ν1(dη)]

)2

,

since ν0, ν1 share the first M moments.

Lemma 17. Let

K =

(
Id +

η2

1−η2uu
T + η′2

1−η′2u
′u′T − η

1−η2uu
T − η′

1−η′2u
′u′T

− η
1−η2uu

T − η′

1−η′2u
′u′T Id +

η2

1−η2uu
T η′2

1−η′2u
′u′T

)
,

where u, u′ are d-dimensional unit vectors. Then,

|K| = (1− (uTu′)2ηη′)2

(1− η2)(1− η′2)

Proof. Let α = η2/(1− η2), α′ = η′2/(1− η′2), β = −η/(1− η2), β′ = −η′/(1− η′2). We aim at finding |K|,
where

K =

(
Id + αuuT + α′u′u′T βuuT + β′u′u′T

βuuT + β′u′u′T Id + αuuTαu′u′T

)
.

First, observe that by Schur’s complement

|K| =
∣∣∣∣Id + αuuT + α′u′u′T

∣∣∣∣
×
∣∣∣∣Id + αuuT + α′u′u′T −

(
βuuT + β′u′u′T

) (
Id + αuuT + α′u′u′T

)−1 (
βuuT + β′u′u′T

) ∣∣∣∣,
and that we may assume without loss of generality that u′ = e1. Indeed, let R be any orthogonal matrix in

Rd,d, and consider Ru,Ru′ in place of u, u′ respectively. Then∣∣∣∣Id + αRuuTRT + α′Ru′u′TRT
∣∣∣∣ = ∣∣∣∣R(Id + αuuT + α′u′u′T )RT

∣∣∣∣ = ∣∣∣∣R∣∣∣∣∣∣∣∣Id + αuuT + α′u′u′T
∣∣∣∣∣∣∣∣RT ∣∣∣∣∣∣∣∣Id + αuuT + α′u′u′T

∣∣∣∣,
and it is easy to check that the same happens for∣∣∣∣Id + αRuuTRT + α′Ru′u′TRT
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−
(
βRuuTRT + β′Ru′u′TRT

) (
Id + αRuuTRT + α′Ru′u′TRT

)−1 (
βRuuTRT + β′Ru′u′TRT

) ∣∣∣∣.
This is not necessary for the proof, but it helps with the notation, and also explains why uTu′

d
= u1 when u

and u′ are sampled as described when we apply the result. Now, for all α, α′ ∈ R,

(
I + αuuT + α′e1e

T
1

)−1
= I − α

1 + α− αα′

1+α′ γ2
uuT − α′

1 + α′ − αα′

1+α′ γ2
e1e

T
1 +

+ γ
α′

1 + α′
α

1 + α− αα′

1+α′ γ2
e1u

T + γ
α

1 + α

α′

1 + α′ − αα′

1+α′ γ2
ueT1 ,

where γ = eT1 u, and

I + αuuT + α′e1e
T
1 −

(
βuuT + β′e1e

T
1

) (
I + αuuT + α′e1e

T
1

)−1 (
βuuT + β′e1e

T
1

)
= I +

γ2η2η′2

1− γ2η2η′2
(uuT + e1e

T
1 )−

γηη

1− γ2η2η′2
(e1u

T + ueT1 ).

Calling x = (γ2η2η′2)/(1− γ2η2η′2) and c = γηη′, we thus have

|K| =
∣∣∣∣Id + αuuT + α′e1e

T
1

∣∣∣∣∣∣∣∣Id + xuuT + xe1e
T
1 − x

c

u e1

( e1

u

)∣∣∣∣.
In order to compute these determinants, we will repeatedly make use of the fact that, if A is an invertible

n× n matrix, U, V are n×m matrices, then

|A+ uuT | = |Im + V TA−1U ||A|.

If A = In, this is commonly referred as the Weinstein–Aronszajn identity. Now,∣∣∣∣Id + αuuT + α′e1e
T
1

∣∣∣∣ = ∣∣∣∣Id + αuuT
∣∣∣∣∣∣∣∣1 + α′eT1 (I − αuuT /(1 + α))e1

∣∣∣∣ = (1 + α)

(
1 + α′ − αα′

1 + α
γ2
)
,

and

∣∣∣∣Id + xuuT + xe1e
T
1 − x

c

u e1

( e1

u

)∣∣∣∣
=

∣∣∣∣Id + xuuT + xe1e
T
1

∣∣∣∣∣∣∣∣I − x

c

(
e1

u

)
(Id + xuuT + xe1e

T
1 )

−1

u e1

∣∣∣∣
= (1 + x)(1 + x− x2

1 + x
γ2)

∣∣∣∣I − x

c

(
e1

u

)
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×

I − x

1 + x− x2

1+xγ
2
(uuT + e1e

T
1 ) + γ

x

1 + x

x

1 + x− x2

1+xγ
2

u e1

( e1

u

)
u e1

∣∣∣∣
= (1 + x)(1 + x− x2

1 + x
γ2)

∣∣∣∣∣
(
1− x

c (γ + 2τ1γ + τ2(1 + γ2)) −x
c (1 + τ1(1 + γ2) + 2τ2γ)

−x
c (1 + τ1(1 + γ2) + 2τ2γ) 1− x

c (γ + 2τ1γ + τ2(1 + γ2))

)∣∣∣∣∣ ,
where τ1 = −x/(1 + x− x2

1+xγ
2), τ2 = γxτ1/(1 + x). Putting all the pieces together,

|K| = (1 + α)

(
1 + α′ − αα′

1 + α
γ2
)
(1 + x)

(
1 + x− x2

1 + x
γ2
)

×
(
(1− x

c
(γ + 2τ1γ + τ2(1 + γ2)))2 − x2

c2
(1 + τ1(1 + γ2) + 2τ2γ))

2

)
,

and substituting the expressions of α, α′, x, c, τ1, τ2 as functions of η, η′, γ gives

|K| = (1− (uTu′)2ηη′)2

(1− η2)(1− η′2)
,

as claimed.

Proof of Proposition 13. We start by proving the first statement. Since ΣS is consistent, we have that

ΣS is compatible if and only if

 Id P −P
PT Id βId

−PT βId Id

 ⪰ 0

if and only if

(
Id βId

βId Id

)
−

(
PTP −PTP
−PTP PTP

)
⪰ 0,

where the second equivalence follows by standard properties of Schur complements. However, we can see

that

inf

{(
x

y

)T {(
Id βId

βId Id

)
−

(
PTP −PTP
−PTP PTP

)}(
x

y

)
: x, y ∈ Rd

}
= inf

{
∥x− y∥22 + 2(1 + β)xT y − ∥P (x− y)∥22 : x, y ∈ Rd

}
= inf

{
∥v∥22 + 2(1 + β)(v + y)T y − ∥Pv∥22 : v, y ∈ Rd

}
= inf

{
1− β

2
∥v∥22 − vTPTPv : v ∈ Rd

}
= inf

{(
1− β

2
− ∥P∥22

)
v2 : v ∈ [0,∞)

}
,

where the third equality follows on noting that the minimising choice of y is given by −v/2. It is now clear

that ΣS is compatible if and only if ∥P∥22 ≤ (1− β)/2, as claimed.

As for the second part of the statement, let v1, . . . ,vd the orthonormal eigenvectors or PTP with eigen-
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values λ1 ≥ . . . ≥ λd, and let L be the maximal l such that λl ≥ (1− β)/2. For l ∈ [L], define

X
(l)
S =

c

4

{(
2Pvlv

T
l P

T −2Pvlv
T
l

−2vlv
T
l P

T vlv
T
l /2

)
,

(
2Pvlv

T
l P

T 2Pvlv
T
l

2vlv
T
l P

T vlv
T
l /2

)
,

(
vlv

T
l /2 −vlv

T
l

−vlv
T
l vlv

T
l /2

)}
,

with 0 < c ≤ 5/6 +
√
73/6, and define XS =

∑L
l=1X

(l)
S . We first show that XS is a feasible solution for our

primal optimisation problem. We have

A∗XS =
c

4

L∑
l=1

4Pvlv
T
l P

T −2Pvlv
T
l 2Pvlv

T
l

−2vlv
T
l P

T vlv
T
l −vlv

T
l

2vlv
T
l P

T −vlv
T
l vlv

T
l

 =
c

4

L∑
l=1

2Pvl

−vl

vl


2Pvl

−vl

vl


T

⪰ 0,

and since X
(0)
S = 1

2 (I2d, I2d, I2d),

XS +X
(0)
S =

1

2

((
Id + cP (

∑L
l=1 vlv

T
l )P

T −cP (
∑L
l=1 vlv

T
l )

−c(
∑L
l=1 vlv

T
l )P

T Id +
c
4

∑L
l=1 vlv

T
l

)
,(

Id + cP (
∑L
l=1 vlv

T
l )P

T +cP (
∑L
l=1 vlv

T
l )

+c(
∑L
l=1 vlv

T
l )P

T Id +
c
4

∑L
l=1 vlv

T
l

)
,

(
Id +

c
4

∑L
l=1 vlv

T
l − c

2

∑L
l=1 vlv

T
l

− c
2

∑L
l=1 vlv

T
l Id +

c
4

∑L
l=1 vlv

T
l

))
.

It remains to show that XS + X
(0)
S ⪰S 0. Now, as for the first component of XS + X

(0)
S , observe that the

bottom-right block

Id +
c

4

L∑
l=1

vlv
T
l ⪰ 0,

and it is invertible due to the fact that ∥c
∑L
l=1 vlv

T
l /4∥2 ≤ c/4 < 1, since the vl’s are orthonormal. The

inverse is(
Id +

c

4

L∑
l=1

vlv
T
l

)−1

=

(
Id −

(
− c
4

L∑
l=1

vlv
T
l

))−1

=

∞∑
k=0

(−1)k
( c
4

)k( L∑
l=1

vlv
T
l

)k

= Id +

∞∑
k=1

(−1)k
( c
4

)k( L∑
l=1

vlv
T
l

)k
= Id +

(
L∑
l=1

vlv
T
l

) ∞∑
k=1

(−1)k
( c
4

)k
= Id +

(
L∑
l=1

vlv
T
l

)(
1

1 + c/4
− 1

)
= Id −

c

c+ 4

L∑
l=1

vlv
T
l ,

where the fourth equality comes from the fact that
∑L
l=1 vlv

T
l is idempotent again by the orthonormality of

the vl’s. Hence, the first component of XS +X
(0)
S is positive semi-definite if and only if

Id + cP

(
L∑
l=1

vlv
T
l

)
PT ⪰ c2P

(
L∑
l=1

vlv
T
l

)(
Id −

c

4 + c

L∑
l=1

vlv
T
l

)(
L∑
l=1

vlv
T
l

)
PT ,
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which is equivalent to

Id ⪰
(

4c2

4 + c
− c

)
P

(
L∑
l=1

vlv
T
l

)
PT =

(
4c2

4 + c
− c

)
P

(
L∑
l=1

vlv
T
l

)2

PT ,

which is satisfied if and only if 4c2/(4 + c) − c ≤ 1, due to the fact that ∥P
(∑L

l=1 vlv
T
l

)2
PT ∥2 =

∥P
(∑L

l=1 vlv
T
l

)
∥22 ≤ 1 again by orthonormality. This implies that the first component of XS +X

(0)
S ⪰S is

PSD if and only if 0 < c ≤ 5/6+
√
73/6, and of course the same is true for the second component of XS+X

(0)
S .

As for the third component, using an analogous idea, it is easy to show that it is positive semi-definite if

and only if

Id ⪰
(

c2

4 + c
− c

4

) L∑
l=1

vlv
T
l ,

which is satisfied if and only if 0 < c ≤ 4. Summing up, this shows thatXS is feasible for 0 < c ≤ 5/6+
√
73/6,

and leads to

R(ΣS) ≥ − c

3d

L∑
l=1

2Pvl

−vl

vl


 Id P −P

P Id βId

−PTβId Id


2Pvl

−vl

vl


T

=
c

3d

L∑
l=1

(
λl −

1− β

2

)
=

c

3d

d∑
l=1

(
λl −

1− β

2

)
+

=
c

3d

d∑
l=1

(
σ2
l (P )

2 − 1− β

2

)
+

>
3

4d

d∑
l=1

(
σ2
l (P )

2 − 1− β

2

)
+

,

since 5/6 +
√
73/6 > 9/4.
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Danijel Aleksić. A novel test of Missing Completely at Random: U-statistics-based approach. Statistics, 0

(0):1–20, 2024. doi: 10.1080/02331888.2024.2386361. URL https://doi.org/10.1080/02331888.2024.

2386361.
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Appendices

Appendix A contains further properties of our measure of incompatibility R that were not investigated

in the main body of the text. Appendix B contains another oracle test based on a different measure of

incompatibility, which acts on covariance matrices normalised in such a way to have fixed scale. Appendix

C contains auxiliary results in Semi-definite Programming, while classical tail bounds are contained in

Appendix D.

Appendix A Further properties of R(·)

We explore the properties of R(·) in the cycle example. In particular, we provide explicit expression in

simple cases, we discuss the meaning of maximal incompatibility and we prove a result showing that R(·)
is bounded below by the maxima of suitable linear functions if ΣSd is not too singular. Here we write

ΣSd := (Σ{1,2}, · · · ,Σ{d,1}) for a collection of 2× 2 correlation matrices with

Σj,j+1 =

(
1 ρj

ρj 1

)
.

Our next result shows that singular matrices can be removed from ΣSd when d ≥ 4, without affecting the

value of R(·), reducing the length of the cycle.

Proposition 18. Fix d ≥ 3 and k ≥ 1. Let ΣSd+k
be a (d+ k)-cycle with correlations (ρ{1,2}, . . . , ρ{d+k,1})

such that |ρj,j+1| = 1 for all j ∈ {d + 1, · · · , d + k} and let ΣSd represent a d-cycle with correlations

(ρ̄{1,2}, . . . , ρ̄{d,1}) such that ρ̄j,j+1 = ρj,j+1, for all j ∈ [d− 1] and
ρ̄d,1 = ρd,d+1 if

d+k∏
j=d+1

ρj,j+1 = 1

ρ̄d,1 = −ρd,d+1 if
d+k∏
j=d+1

ρj,j+1 = −1.

Then we have R(ΣSd+k
) = R(ΣSd).

Proof of Proposition 18. We will prove the result using the dual characterisation, which allows expressing

R(ΣSd) as

1− 1

d
sup{tr(Σ) : Σ ∈ P∗,Σ11 = · · · = Σdd,ΣSd −AΣ ⪰Sd 0}.

Suppose that
∏d+k
j=d+1 ρj,j+1 = 1. We will show that R(ΣSd+k

) = R(ΣSd) by proving both R(ΣSd+k
) ≥ R(ΣSd)

and R(ΣSd+k
) ≤ R(ΣSd). As for the first of these, for every Σ̃ optimal for ΣSd+k

, we will show that Σ = Σ̃|[d]

is feasible for ΣSd . Now, Σ ⪰ 0 since Σ̃ ⪰ 0, and Σ11 = . . . = Σdd by definition of Σ̃. As for ΣSd −ASdΣ ⪰S 0,

observe that ΣSd contains exactly the first d matrices in ΣSd , but Sd contains just d − 1 patterns of ΣSd+k
.

This is due to the fact that Sd has {d, 1} in place of {d, d+1}, which prevents us from employing Proposition

6 (ii). Nonetheless, observe that Σ̃1,d = Σ̃d,d+1, due to the fact that Σ̃j,j+1 = ρj,j+1Σ̃11 = ±Σ̃11 for all
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j ∈ {d+ 1, . . . , d+ k}. Indeed, ΣSd+k
−ASd+k

Σ̃ ⪰Sd+k
0 implies that(

1 ±1

±1 1

)
−

(
Σ̃11 Σ̃j,j+1

Σ̃j,j+1 Σ̃11

)
⪰ 0

for all j ∈ {d+1, . . . , d+ k}, which can be satisfied if and only if Σ̃j,j+1 = ±Σ̃11 = ρj,j+1Σ̃11, since we must

also have |Σ̃j,j+1| ≤ Σ̃11 in order to have Σ̃ ⪰ 0. The fact that Σ̃j,j+1 = ρj,j+1Σ̃11 for all j ∈ {d+1, . . . , d+k}
implies that Var(Xj+1 − Σ̃j+1,j+2Xj+2) = 0, for all j ∈ {d, · · · , d+ k − 1}, since ASd+k

Σ̃ is compatible. By

induction, this gives Var(Xd+1 −
∏d+k
j=d+1 Σ̃j,j+1X1) = 0 by which

Σ̃1,d =
1

d+k∏
j=d+1

Σ̃j,j+1

Σ̃d,d+1 =
1

d+k∏
j=d+1

ρj,j+1

Σ̃d,d+1 = Σ̃d,d+1.

Since Σ̃1,d = Σ̃d,d+1, we know that ΣSd+k
−ASd+k

Σ̃ ⪰Sd+k
0 implies that ΣSd −ASdΣ ⪰S 0.

To show the reverse inequality, consider an optimal Σ for ΣSd coming from the dual formulation above,

and define

Σ̃ :=

(
Σ B

BT U

)
,

where

U := Σ11


U11 · · · U1k

...
...

Uk1 · · · Ukk


is such that U = UT , Uii = 1 for i ∈ [k], Ui,i+1 = ρd+i,d+i+1 for i ∈ [k − 1], U1k = Uk1 is either +1 or −1 to

make this (k − 1)-cycle completable, and the other entries are again +1 or −1 to make the cycle consistent;

and

BT :=


B11 · · · B1d

...
...

Bk1 · · · Bkd


is such that Bij = Σ1j · Ui1 for i ∈ [k], j ∈ [d]. If such a Σ̃ is feasible for ΣSd+k

, then the result would follow

from the fact that R(ΣSd+k
) ≤ 1− tr(Σ̃)/(d+k) = 1−Σ11 = R(ΣSd). The condition ΣSd+k

−ASd+k
Σ̃ ⪰Sd+k

0

is implied by ΣSd − AΣ ⪰Sd 0, which is satisfied by hypothesis, and (1 − Σ11)Σ{i,i+1} ⪰ 0 for i ∈ {d +

1, · · · , d+ k − 1}, which is again satisfied since Σ11 ∈ [0, 1] and Σ{i,i+1} ⪰ 0. Moreover, being a symmetric

block matrix, Σ̃ is positive semi-definite if and only if Σ ⪰ 0, which is true by hypothesis, U −BTΣ†B ⪰ 0,

and (I−ΣΣ†)B = 0, where Σ† is the Moore-Penrose inverse of Σ. As for the first of these last two conditions,

observe that the (k, h)-th entry of BTΣ†B is given by

(BTΣ†B)kh = Uk1Σ
T
1 Σ

†Σ1Uh1 = Uk1Uh1Σ
T
1 Σ

†Σ1 = UkhΣ
T
1 Σ

†Σ1,

where Σ1 is the first column of Σ. What is left to prove is to check that ΣT1 Σ
†Σ1 = tr(ΣT1 Σ

†Σ1) = Σ11 and,

to this aim, we will use the limit characterisation of the pseudoinverse (see pag. 19 in Albert (1972)), which
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allows writing Σ† as limδ→0 Σ
T (ΣΣT + δ2I)−1. With this in mind, and calling λi the eigenvalues of Σ, and

vi the associated orthonormal eigenvectors,

tr(ΣT1 Σ
†Σ1) = tr(Σ†Σ1Σ

T
1 ) = tr

(
lim
δ→0

ΣT (ΣΣT + δ2I)−1Σ1Σ
T
1

)
= lim
δ→0

tr
(
(ΣΣT + δ2I)−1Σ1Σ

T
1 Σ

T
)
= lim
δ→0

tr

(
d∑
i=1

1

λ2i + δ2
viv

T
i Σ1Σ

T
1 Σ

T

)

= lim
δ→0

d∑
i=1

1

λ2i + δ2
tr
(
viv

T
i Σ1Σ

T
1 Σ

T
)
= lim
δ→0

d∑
i,j=1

λj
λ2i + δ2

tr
(
vjv

T
j viv

T
i Σ1Σ

T
1

)
= lim
δ→0

d∑
i=1

λi
λ2i + δ2

∥vivTi Σ1∥22 = lim
δ→0

d∑
i=1

λi
λ2i + δ2

∥vivTi
d∑
j=1

λjvj1vj∥22

= lim
δ→0

d∑
i=1

λ3i
λ2i + δ2

∥vi1vi∥22 =

d∑
i=1

λiv
2
i1 = Σ11.

The other condition can be checked easily using again the limit characterisation of Σ† and the spectral

decomposition of Σ. This concludes the proof for the case
∏d+k
j=d+1 ρj,j+1 = +1. On the other hand, if∏d+k

j=d+1 ρj,j+1 = −1, R(ΣSd+k
) ≥ R(ΣSd) follows after noticing that, if Σ̃ is optimal for ΣSd+k

, we must have

Σ̃d,d+1 = −Σ̃d,1. As for R(ΣSd+k
) ≤ R(ΣSd), the proof follows the exact same line as the one above, with

the only exception that Bij should now be defined as −Σ1j · Ui1 for i ∈ [k], j ∈ [d].

This reduction applies when the correlations associated to an edge belonging to the path from node d+1

to node 1 are either +1 or −1. In this setting, we are allowed to identify node 1 with node d+ 1 in such a

way that the incompatibility measure of the d-cycle ΣSd is the same as the one of the original (d+ k)-cycle

ΣSd+k
. This is to be expected, as ρj,j+1 = ±1 means that variables j and j + 1 can be identified, up to

change in scale, and the dimensionality of the problem can be reduced. Clearly, this result is invariant under

cyclic permutations of the nodes’ labels.

We now give some explicit expressions for R(·) in special cases and discuss a case for which R(ΣS) =

1, meaning that ΣS is maximally incompatible. It will be convenient for the rest of the subsection to

reparametrise the correlations as ρj = cos θj , with θj ∈ [0, π].

Example 4. If there are θ1, θ2 ∈ [0, π] such that θ1 ≥ θ2 and

ΣS3 =

{(
1 cos θ1

cos θ1 1

)
,

(
1 cos θ2

cos θ2 1

)
,

(
1 1

1 1

)}
,

then R(ΣS3) = (cos θ2 − cos θ1)/2. In particular, setting θ2 = 0 we see that if

ΣS3 =

{(
1 cos θ1

cos θ1 1

)
,

(
1 1

1 1

)
,

(
1 1

1 1

)}
,

then R(ΣS3) = sin2(θ1/2). Moreover, assuming without loss of generality that at most one correlation is
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negative, as justified in Proposition 19 below, for a general 3-cycle ΣS3 we have R(ΣS3) = 1 if and only if

ΣS3 :=

{(
1 −1

−1 1

)
,

(
1 1

1 1

)
,

(
1 1

1 1

)}
.

These results can be extended to a general d using Proposition 18.

Proof of Example 4. Start by considering a 3-cycle. In the first case, the optimal Σ of the dual representation

R(ΣS3) = 1− 1

d
sup{tr(Σ) : Σ ∈ P∗,ΣS −AΣ ⪰S 0,Σ11 = Σ22 = Σ33}

must be of the form λ x λ

x λ y

λ y λ


for some λ ∈ [0, 1] and some x, y ∈ [−λ, λ] in order to satisfy ΣS − AΣ ⪰S 0. Furthermore, since det(Σ) =

−λ(x− y)2, we must have x = y in order to satisfy Σ ⪰ 0. It follows that

R(ΣS3) = 1− sup{λ ∈ [0, 1] : 1− λ ≥ max{|x− ρ1|, |x− ρ2|}, with x ∈ [−λ, λ]}

= inf{ϵ ∈ [0, 1] : ϵ ≥ max{|x− ρ1|, |x− ρ2|}, ϵ ≤ 1− |x|}

= inf{max{|x− ρ1|, |x− ρ2|} ∈ [0, 1] : max{|x− ρ1|, |x− ρ2|} ≤ 1− |x|}

which is equal to (cos θ2 − cos θ1)/2. As for the second case with d = 3, setting ρ2 = 1 in the above we see

that if

ΣS3 =

{(
1 ρ1

ρ1 1

)
,

(
1 1

1 1

)
,

(
1 1

1 1

)}
,

then R(ΣS3) = (1− ρ1)/2 = (1− cos θ1)/2 = sin2(θ1/2). Plugging in θ1 = π gives the sufficiency part of the

second statement. As for the necessity part, Proposition 11 (i) implies that it is necessary that |ρi| = 1 for

all i ∈ [d] for R to be 1.

Related to the last claim of Example 4, another important property for a d-cycle is that we can always

assume without loss of generality that at most one θi is larger than π/2, which is equivalent to having at

most one negative ρi, without changing the value of R(·). This is shown in the following result.

Proposition 19. Consider the d-cycle with Sd = {{1, 2}, . . . , {d, 1}} and ΣSd := (Σ{1,2}, · · · ,Σ{d,1}), where

the correlations ρj = cos θj are uniquely determined by 0 ≤ θ1, . . . , θd ≤ π. Then, there exists another

sequence of angles 0 ≤ θ̃1, . . . , θ̃d ≤ π with at most one θ̃i larger than π/2 such that the corresponding d-cycle

Σ̃Sd := (Σ̃{1,2}, · · · , Σ̃{d,1}) satisfies R(Σ̃Sd) = R(ΣSd).

Proof of Proposition 19. It is easy to see that we can always transform the original d-cycle into a new one

where at most cos θ1 is negative by changing some Xj into −Xj . To see why, let θ = (θ1, . . . , θd) be such

that θj = 1{ρj,j+1 ≥ 0}, and observe that, if θj−1 = 0 and θj = 1, changing the sign of Xj corresponds to

switching θj−1 with θj . Hence, it is easy to see that we can switch signs to some variables in order to reach a

configuration of θ in which all the zeros are at the beginning, and all the ones at the end. It is now sufficient
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to couple the zeros starting from the end, and switch sign to make it both one, to get θ = (θ1,1d−1), where

θ1 = +1 if the number of original ρj,j+1 is even, and zero otherwise. As a by-product, this also shows that

we can always assume without loss of generality that at most cos θ1 is negative. Now, let Σ̃Sd be this new

d-cycle: what we want to show is that R(Σ̃Sd) = R(ΣSd), and, in order to do so, we will show that we

can construct feasible X̃S and Σ̃ for primal and dual problems of Σ̃Sd which lead to the same target values,

using the optimal XS and Σ for ΣSd . Starting from the dual problem, let M be a diagonal matrix such that

Mjj = −1 if Xj was replaced with −Xj , and +1 otherwise. Then, it is easy to see Σ̃ = MΣM has the

same trace as Σ, and it is feasible for Σ̃Sd : indeed, Σ̃ ⪰ 0 since it has the same spectrum as Σ, being similar

matrices, and Σ̃Sd −AΣ̃ ⪰Sd 0 because for every j ∈ [d] we have

Σ̃{j,j+1}−Σ̃|{j,j+1} =

(
1 ρ̃j

ρ̃j 1

)
−

(
Σ̃j,j Σ̃j,j+1

Σ̃j,j+1 Σ̃j+1,j+1

)

=

(
1 Mj,jMj+1,j+1ρj

Mj,jMj+1,j+1ρj 1

)
−

(
Σj,j Mj,jMj+1,j+1Σj,j+1

Mj,jMj+1,j+1Σj,j+1 Σj+1,j+1

)

=

(
1− Σj,j Mj,jMj+1,j+1(ρj − Σj)

Mj,jMj+1,j+1(ρj − Σj) 1− Σj+1,j+1

)
⪰ 0,

since |Mj,jMj+1,j+1(ρj − Σj)| = |ρj − Σj | ≤ 1 − Σj,j = 1 − Σj+1,j+1, due to the fact that Σ is feasible for

ΣS. As for the primal problem, it is sufficient to define X̃S = AM ·XS · AM , where · acts pointwise, which
essentially consists in changing the signs of the off-diagonal entries of XS according to M . Let

X{j,j+1} =

(
xj,11 xj,12

xj,21 xj,22

)
and X̃{j,j+1} =

(
x̃j,11 x̃j,12

x̃j,21 x̃j,22

)
=

(
xj,11 Mj,jMj+1,j+1xj,12

Mj,jMj+1,j+1xj,21 xj,22

)
,

for all j ∈ [d]. It is easy to show that X̃S is feasible, and clearly leads to ⟨X̃S, Σ̃S⟩S = ⟨XS,ΣS⟩S since, for a

generic pattern j ∈ [d], we have

⟨X̃{j,j+1}, Σ̃{j,j+1}⟩ = ⟨

(
x̃j,11 x̃j,12

x̃j,21 x̃j,22

)
,

(
1 ρ̃j

ρ̃j 1

)
⟩

= ⟨

(
xj,11 Mj,jMj+1,j+1xj,12

Mj,jMj+1,j+1xj,21 xj,22

)
,

(
1 Mj,jMj+1,j+1ρj

Mj,jMj+1,j+1ρj 1

)
⟩

= xj,11 + xj,22 +M2
j,jM

2
j+1,j+1xj,12ρj +M2

j,jM
2
j+1,j+1xj,21ρj

= xj,11 + xj,22 + xj,12ρj + xj,21ρj

= ⟨

(
xj,11 xj,12

xj,21 xj,22

)
,

(
1 ρj

ρj 1

)
⟩ = ⟨X{j,j+1},Σ{j,j+1}⟩.

This completes the proof.

The last result we present on the d-cycle gives an explicit lower bound for R in the case that ΣSd is

incompatible. This is related to the results of Barrett et al. (1993) characterising exactly when the partial
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correlation matrix

Σpartial =



1 cos θ1 ∗ · · · cos θd

cos θ1 1 cos θ2 · · · ∗
∗ cos θ2 1 . . . ∗
...

...
...

. . .
...

cos θd ∗ ∗ · · · 1


has a positive semi-definite completion. Barrett et al. (1993) shows that this is the case if and only if∑

j∈K
θj ≤ (|K| − 1)π +

∑
j ̸∈K

θj (41)

for all K ⊆ [d] with |K| odd. Remarkably, this shows that the parametrisation ρj,j+1 = cos θj allows us to

characterise the feasibility of positive semi-definite matrix completion in terms of a finite number of linear

inequalities. If we know that 0 ≤ θd ≤ θd−1 ≤ . . . ≤ θ1 ≤ π then this reduces to checking

k∑
j=1

θj ≤ (k − 1)π +

d∑
j=k+1

θj

for all odd k ∈ [d]. Furthermore, if 0 ≤ θ1, . . . , θd ≤ π with at most one θj larger than π/2, then Σpartial has

a positive semi-definite completion if and only if

2max
j∈[d]

θj ≤
d∑
j=1

θj .

Proposition 19 shows that we can always work under this setting, so that the problem of whether Σpartial

has a PSD completion or not is determined by one condition only, namely 2maxj∈[d] θj ≤
∑d
j=1 θj . This is

a novel contribution per se, since it is not present in Barrett et al. (1993).

We now show that, provided not too many of our input matrices are close to being singular, R(ΣSd) can

be bounded below by a finite maximum of linear functionals that is zero if and only if ΣSd is compatible.

This lower bound constitutes another sanity check for our measure R(·), since the quantities appearing in

the lower bound are a natural quantitive version of the qualitative conditions given in Barrett et al. (1993)

to check whether the partial matrix Σpartial defined above admits a PSD completion.

Proposition 20. Consider the d-cycle with S = Sd = {{1, 2}, . . . , {d, 1}} and suppose that

Σ{j,j+1} =

(
1 cos θj

cos θj 1

)
.

Assume further that there exist c > 0 and two indices k, j ∈ [d] such that 1 − ρ2j ≥ c, 1 − ρ2k ≥ c, so that

Σ{j,j+1} and Σ{k,k+1} are bounded away from singularity. Then, whenever ΣSd is incompatible, we have

R(ΣSd) ≥ c′ max
K⊆[d]

|K| odd

(∑
i∈K

θi − (|K| − 1)π −
∑
i∈Kc

θi

)
,
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where c′ > 0 depends only on c.

Proof of Proposition 20. We will prove the statement by induction, with base cases d = 3, and d = 4:

d = 3 Suppose without loss of generality that θ1, θ2 are bounded away from singularity. Also, assume without

loss of generality that θ2, θ3 ≤ π/2, using Proposition 19, so that incompatibility means θ1 > θ2 + θ3.

We will prove the base case

R(ΣS3) ≳ θ2 − θ1 − θ3.

by showing that

R(ΣS3) ≥
θ1 − θ2 − θ3
θ1 − θ2

cos θ2 − cos θ1
2

,

and since cos θ2− cos θ1 ≳c θ1−θ2 being bounded away from singularity, the result would follow. Now,

fix arbitrary θ1, θ2 satisfying the hypothesis of the statement, and suppose θ1 − θ2 ≤ π/2. Observe

that for θ3 = 0 and θ3 = θ1 − θ2 the lower bound is satisfied with equality sign due to Example 3 and

Barrett’s characterisation (41), respectively. Now, call

h =
θ1 − θ2 − θ3
θ1 − θ2

,

and observe that the thesis is equivalent to

λ∗ = 1−R(ΣSd) ≤ 1− h

2
(cos θ2 − cos θ1),

Now, thanks to the KKT representation of the optimal λ∗, in order to have λ∗ > 1−h(cos θ2−cos θ1)/2

we must have 

cos θ1 < cosφ∗
1 <

cos θ1+h(cos θ2−cos θ1)/2
1−h(cos θ2−cos θ1)/2

cos θ2 > cosφ∗
2 >

cos θ2−h(cos θ2−cos θ1)/2
1−h(cos θ2−cos θ1)/2

cos θ3 > cosφ∗
3 >

cos θ3−h(cos θ2−cos θ1)/2
1−h(cos θ2−cos θ1)/2

,

with φ∗
1 = φ∗

2 + φ∗
3 due to Proposition 11 (iii). We see numerically that this system of inequalities

can never be satisfied for θ3 ∈ (0, θ1 − θ2). Finally, taking into account all the possible ways in

which a generic 3-cycle can be reduced to a 3-cycle with at most one negative correlation, as stated in

Proposition 19, we get

R(ΣS3) ≳ max(θ1 − θ2 − θ3, θ2 − θ1 − θ3, θ3 − θ1 − θ2, θ1 + θ2 + θ3 − 2π).

d = 4 Suppose without loss of generality that one of the two angles bounded away from singularity is θ1,

with θ1 > θ2 + θ3 + θ4, and θ2, θ3, θ4 ∈ [0, π/2]. As shown in Figure 15, there are two possible cases:

the first one (on the left) is when the two angles bounded away from singularity are adjacent, and the

second one (on the right) when they are opposite to each other. We will use the following lemma:
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Lemma 21. Consider the d-cycle with Sd = {{1, 2}, . . . , {d, 1}} and ΣSd := (Σ{1,2}, · · · ,Σ{d,1}). Then,

for every optimal Σ of the dual problem, i.e. ΣSd = λ∗AΣ+ (1− λ∗)Σ′
Sd , and for every d ≥ 4,

R(ΣSd) ≥ R(BSd−1
(ϕ)) +R(ES3(ϕ)), ∀ϕ ∈ [λ∗Σ1,d−1 −R, λ∗Σ1,d−1 +R],

where BSd−1
(ϕ) = (Σ{1,2}, · · · ,Σ{d−2,d−1},Σ{d−1,1}(ϕ)), ES3(ϕ) = (Σ{d−1,d},Σ{d,1},Σ{d−1,1}(ϕ)) and

Σ{d−1,1}(ϕ) is the 2× 2 correlation matrix with off-diagonal entries equal to ϕ.

Proof of Lemma 21. Suppose without loss of generality that θd ≥ θd−1, and that θ1 = maxi∈[d] θi, with

θ2, . . . , θd ≤ π/2. Let R ≡ R(ΣSd), and let

ΣSd = (1−R)AΣ+RΣ′
S = λ∗AΣ+ (1− λ∗)Σ′

S

be a (not necessarily unique) dual representation of ΣSd , and denote by Σ1,d−1 the entry (1, d− 1) of

Σ. We will prove the statement in three steps:

1. R(BSd−1
(λ∗Σ1,d−1 +R)) ≤ R(ΣSd) and R(ES3(λ

∗Σ1,d−1 +R)) = 0,

2. R(ES3(λ
∗Σ1,d−1 −R)) ≤ R(ΣSd) and R(BSd−1

(λ∗Σ1,d−1 −R)) = 0,

3. Ξ(ϕ) := R(BSd−1
(ϕ)) +R(ES3(ϕ)) is convex for all ϕ ∈ [−1, 1].

1. As for the fact that R(ES3(λ
∗Σ1,d−1 +R)) = 0 observe that

A∗ES3(λ
∗Σ1,d−1 +R)− I3 =

 1 λ∗Σ1,d−1 +R ρd

λ∗Σ1,d−1 +R 1 ρd−1

ρd ρd−1 1

 =

=

 1 λ∗Σ1,d−1 +R λ∗Σ1,d +R

λ∗Σ1,d−1 +R 1 λ∗Σd−1,d +R

λ∗Σ1,d +R λ∗Σd−1,d +R 1



= λ∗

 1 Σ1,d−1 Σ1,d

Σ1,d−1 1 Σd−1,d

Σ1,d Σd−1,d 1

+ (1− λ∗)

1 1 1

1 1 1

1 1 1

 ,

where the second equality follows from the optimal choice of signs given in Proposition 11 (iii)

under the hypothesis θ1 = maxi∈[d] θi, with θ2, . . . , θd ≤ π/2. This implies R(ES3(λ
∗Σ1,d−1+R)) =

0 since A∗ES3(λ
∗Σ1,d−1 + R) − I3, which is the 3 × 3 correlation matrix whose 2 × 2 marginals

are precisely those in ES3(λ
∗Σ1,d−1 + R), is PSD being the sum of two PSD matrices. As for

R(BSd−1
(λ∗Σ1,d−1 +R)) ≤ R(ΣSd), observe that, if ΣSd = λ∗AΣ+ (1− λ∗)Σ′

Sd , then

BSd−1
(λ∗Σ1,d−1 +R) = λ∗AΣ|(−d) + (1− λ∗)Σ′′

BSd−1
,

where

Σ′′
BSd−1

= (Σ′
{1,2}, . . . ,Σ

′
{d−1,d−2},121

T
2 ),
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which is maximally incompatible. To see why, observe that Σ′
Sd is maximally incompatible by

definition of the dual representation, and since θ1 = maxi∈[d] θi, with θ2, . . . , θd ≤ π/2, Proposition

11 (iii) ensures that

Σ′
Sd = (−121

T
2 ,+121

T
2 , . . . ,+121

T
2 ),

which leads to

Σ′′
BSd−1

= (−121
T
2 ,+121

T
2 , . . . ,+121

T
2 ).

This shows that Σ|(−d) is feasible for BSd−1
(λ∗Σ1,d−1 +R), and implies that R(BSd−1

(λ∗Σ1,d−1 +

R)) ≤ R(ΣSd).

2. The arguments in the proof above can be followedmutatis mutandis to show thatR(ES3(λ
∗Σ1,d−1−

R)) ≤ R(ΣSd) and R(BSd−1
(λ∗Σ1,d−1 −R)) = 0.

3. In order to show that R(ΣSd) ≥ R(BSd−1
(ϕ)) + R(ES3(ϕ)),∀ϕ ∈ I, we will make use of the fact

that R is convex and continuous, as stated in Proposition 6 (i) (ii), i.e.

R
(
µΣ

(1)
S + (1− µ)Σ

(2)
S

)
≤ µR

(
Σ

(1)
S

)
+ (1− µ)R

(
Σ

(2)
S

)
, for all µ ∈ [0, 1].

Now, define

Ξ(ϕ) = R(BSd−1
(ϕ)) +R(ES3(ϕ)), for all ϕ ∈ I = [−1, 1].

It is easy to see that Ξ(ϕ) is convex in I since, for all ϕ1, ϕ2 ∈ I, for all µ ∈ [0, 1],

Ξ(µϕ1 + (1− µ)ϕ2) = R(BSd−1
(µϕ1 + (1− µ)ϕ2) +R(ES3(µϕ1 + (1− µ)ϕ2))

= R(µBSd−1
(ϕ1) + (1− µ)BSd−1

(ϕ2)) +R(µES3(ϕ1) + (1− µ)ES3(ϕ2))

≤ µR(BSd−1
(ϕ1)) + (1− µ)R(BSd−1

(ϕ2)) + µR(ES3(ϕ1)) + (1− µ)R(ES3(ϕ2))

= µΞ(ϕ1) + (1− µ)Ξ(ϕ2).

This, implies that, for all µ ∈ [0, 1],

R ≥ µR(ESd−1
(λ∗Σ1,d−1 −R)) + (1− µ)R(BSd−1

(λ∗Σ1,d−1 −R))

= µΞ(λ∗Σ1,d−1 −R) + (1− µ)Ξ(λ∗Σ1,d−1 +R) ≥ Ξ(λ∗Σ1,d−1 + 1− 2µR)

=: Ξ(ϕ) = R(BSd−1
(ϕ)) +R(ES3(ϕ)),

for all ϕ ∈ [λ∗Σ1,d−1−R, λ∗Σ1,d−1+R], as claimed. For general angles (θ1, . . . , θd), it is sufficient

to perform the transformation outlined in Proposition 19, find ϕ and I as above, and perform the

inverse transformation.

As we can see from Figure 14, this reduction corresponds to adding an edge in correspondence to

{1, d − 1}, so that the d-cycle ΣSd is divided into two smaller cycles, BSd(ϕ) of dimension d − 1, and

ESd(ϕ) of dimension 3. The result ensures the possibility of adding a correlation ρ1,d−1 = ϕ for the

edge {1, d− 1} to make BSd(ϕ) and ESd(ϕ) maximally compatible, or better, at least as compatible as

the original d-cycle, since R(ΣSd) ≥ R(BSd(ϕ)) +R(ESd(ϕ)).
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Figure 14: Illustration of Proposition 21. We split the original d-cycle into two smaller cycles, adding the extra edge
{1, d− 1} with associated correlation ϕ. We end up with a (d− 1)-cycle BSd−1(ϕ) in yellow, and a 3-cycle ES3(ϕ) in
blue, such that R(ΣSd) ≥ R(BSd−1(ϕ)) +R(ES3(ϕ)) for all ϕ ∈ [λ∗Σ1,d−1 −R, λ∗Σ1,d−1 +R].

In the first case, suppose we add an edge between (2, 4) with correlation cos(θ3 + θ4). We first show

that this is a valid choice of ϕ to invoke Proposition 21. In this regard, observe that R(ES3(ϕ)) = 0

for all ϕ ∈ [cos(θd−1 + θd), cos(θd−1 − θd)], hence, since we proved R(ESd−1
(λ∗Σ1,d−1 +R)) = 0 in the

proof of the lemma above, we must have cos(θd−1+θd) ≤ λ∗Σ1,d−1+R. Similarly, cos(θ1−
∑d−2
i=2 θi) ≥

λ∗Σ1,d−1−R. This, together with the fact that cos(θ1−
∑d−2
i=2 θi) ≤ cos(θd−1+ θd) since θ1 >

∑d
i=2 θi,

allows concluding that λ∗Σ1,d−1 − R ≤ cos(θ1 −
∑d−2
i=2 θi) < cos(θd−1 + θd) ≤ λ∗Σ1,d−1 + R. Now,

Proposition 21 ensures that

R(θ1, θ2, θ3, θ4) ≥ R(θ1, θ2, θ3 + θ4),

and since θ1, θ2 are bounded away from singularity, we can employ the lower bound we found for d = 3,

and conclude

R(ΣS4) ≥
θ1 − θ2 − (θ3 + θ4)

θ1 − θ2

cos θ2 − cos θ1
2

,

which gives the desired result. In the second case, we can proceed in the same way as before, and get

R(ΣS4) ≥
θ1 − θ2 − (θ3 + θ4)

θ1 − (θ3 + θ4)

cos(θ3 + θ4)− cos θ1
2

.

Now, if sin2(θ3 + θ4) ≥ c we are done, otherwise, θ4 must be bounded away from singularity. Indeed,

since θ3, θ4 ∈ [0, π/2], and sin2(θ3) ≥ c by hypothesis, in order to have sin2(θ3 + θ4) < c we must

have sin2 θ4 ≥ 1 − c. Now, since we can assume that c is small enough, say c ≤ 1/2, we conclude

sin2 θ4 ≥ 1− c > c. This implies that θ4 is bounded away from singularity, and since it is adjacent to

θ1, we can proceed as in the first case to get the desired result.
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Figure 15: The two possible configurations of the two angles bounded away from singularity when d = 4. On the
left, the two angles are adjacent, while on the right they are opposite to each other.

d ≥ 5 Suppose again without loss of generality that θ1 is bounded away from singularity, and call θj the

other one. Now, since d ≥ 5, we can find k ̸= 1, j such that θk, θk+1 are not necessarily assumed to be

bounded away from singularity. Then, proceeding as before, thanks to Proposition 21, we have

R(θ1, . . . , θd) ≥ R(θ1, . . . , θk−1, θk + θk+1, θk+2, . . . , θd),

so that the induction step gives immediately that

R(θ1, . . . , θd) ≥ R(θ1, . . . , θk−1, θk + θk+1, θk+2, . . . , θd)

≥ c′

θ1 − (θk + θk+1)−
∑

i ̸=1,j,k,k+1

θi

 = c′

(
θ1 −

d∑
i=2

θi

)
,

where c′ is a constant depending on c only. Finally, taking into account all the possible ways in

which a generic d-cycle can be reduced to a d-cycle with at most one negative correlation, as stated in

Proposition 19, we get

R(ΣSd) ≥ c′ max
K⊆[d]

|K| odd

(∑
i∈K

θi − (|K| − 1)π −
∑
i∈Kc

θi

)
,

where c′ > 0 depends only on c.

First, observe that this lower bound reduces to

c′

(
θ1 −

d∑
i=2

θi

)
+

,

in the case that θ1 = maxj∈[d] θj and θ2, . . . , θd ≤ π/2, which we have already argued that we may assume

without loss of generality. Furthermore, as a sanity check, the simple explicit expressions found in Example
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3, in which we have seen that

R

({(
1 cos θ1

cos θ1 1

)
,

(
1 cos θ2

cos θ2 1

)
,

(
1 1

1 1

)
, . . . ,

(
1 1

1 1

)})
= (cos θ2 − cos θ1)/2,

is in accordance with Proposition 20, since cos θ2−cos θ1 ≳c θ1−θ2 when θ1, θ2 are bounded away from {0, π}.

We now analyse two further examples, where the missingness patterns S is more complex. These examples

are interesting per se, but we have decided not to include them in the main body because they would have

disrupted the flow of the presentation. We start from the case where we observe all possible patterns of

cardinality d− 1, and nothing else.

Example 5. Consider the set of patterns S = {S(−1), · · · , S(−d)}, with d ≥ 2, where S(−i) = {1, . . . , i −
1, i+1, . . . , d}. We show how R(ΣS) can be lower-bounded by the maximal inconsistency, or, more precisely,

R(ΣS) ≥
1

2
max
i>j

max
k>h

k,h ̸=i,j

|ρ(k)ij − ρ
(h)
ij | =: Θ,

where ρ
(k)
ij is the correlation between Xi and Xj for the pattern S(−k), for k ∈ [d] \ {i, j}.

Proof of Example 5. In order to prove the statement, suppose the maximum is |ρ(k)ij − ρ
(h)
ij |, and consider

XS = dYS −X
(0)
S , where X

(0)
S = 1

d−1 (Id−1, . . . , Id−1) and

YS = (0, . . . , A1︸︷︷︸
h

, 0, . . . , 0, A2︸︷︷︸
k

, 0, . . . , 0),

with

(A1)ĩ,j̃ =

1/4 if (̃i, j̃) ∈ {(i, i), (j, j), (i, j), (j, i)}

0 otherwise,

and

(A2)ĩ,j̃ =


1/4 if (̃i, j̃) ∈ {(i, i), (j, j)}

−1/4 if (̃i, j̃) ∈ {(i, j), (j, i)}

0 otherwise.

Then, provided XS is feasible, we get precisely that

R(ΣS) ≥ −1

d
⟨XS,ΣS⟩S =

1

2
max
i>j

max
k>h

k,h ̸=i,j

|ρ(k)ij − ρ
(h)
ij |.

All is left to prove is that XS is indeed feasible: XS + X
(0)
S = dYS ⪰S 0, and A∗XS is diagonal with trace

zero, hence we can choose Y = −A∗XS ∈ Y in the primal characterisation so that A∗XS + Y = O ⪰ 0.

Observe that the same is true in the case where we also have a complete case pattern, i.e. S =

{[d], S(−1), · · · , S(−d)}, with d ≥ 2, meaning that using the same strategy we can control R with the maximal
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inconsistency. Related to this, it would be interesting to know if there is a case in which the incompatibility

value Θ controls R(ΣS) both from above and below, meaning that Θ fully characterises R(ΣS). In this regard,

we have the following:

Example 6. Consider S = {S(−1), · · · , S(−d)} and ΣS = (Id−1, . . . , Id−1, A), where

A =



1 ϵ1/2 0 0 · · · 0

ϵ1/2 1 ϵ2/2 0 · · · 0
...

. . .
. . .

. . .

...
. . .

. . .
. . .

0 · · · 0 0 ϵd−1/2 1


,

with ϵi ∈ [−1, 1]. Then,

R(ΣS) = Θ =
1

2
max
i∈[d−1]

|ϵi|.

Proof of Example 6. If we consider

Σ =



1−Θ ϵ1/4 0 · · · 0 0 0 0

ϵ1/4 1−Θ ϵ2/4 · · · 0 0 0 0

. . .
. . .

. . .

. . .
. . .

. . .

0 · · · 0 · · · ϵd−2/4 1−Θ ϵd−1/4 0

0 · · · 0 0 · · · ϵd−1/4 1−Θ 0

0 · · · 0 · · · 0 0 0 1−Θ



∈ Rd,d,

if Σ were feasible we would be able to conclude R(ΣS) =
1
2 maxi∈[d] |ϵi| being

Θ ≥ R(ΣS) ≥ Θ =
1

2
max
i∈[d−1]

|ϵi|.

All is left to prove is that Σ is feasible. First, Σ ⪰ 0 since it is diagonally dominant, being 1−maxi∈[d] |ϵi|/2 ∈
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[1/2, 1] and ϵi/4 ∈ [−1/4, 1/4]. Finally, a generic element in ΣS −AΣ is given by



maxi∈[d] |ϵi|/2 α1/4 0 0 · · · 0

α1/4 maxi∈[d] |ϵi|/2 α2/4 0 · · · 0

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

0 · · · 0 0 αd−1/4 maxi∈[d] |ϵi|/2


∈ Rd−1,d−1,

where αi ∈ {±ϵi, 0}. This is again diagonally dominant since maxi∈[d] |ϵi|/2 ≥ |αj |/4 + |αj+1|/4 for all

j ∈ [d− 1], by definition of the maximum.

This example is particularly important since it clearly shows that, in this case, testing compatibility is

at least as hard as testing consistency. Indeed, Θ is a pointwise measure of consistency, and equals 0 if and

only if ΣS is consistent. Nonetheless, the equality R(ΣS) = Θ holds for a very specific subclass of ΣS, while,

in general, there could be cases for which R(ΣS) > 0, while Θ = 0.

Example 7. Consider S = {[d− 2] ∪ {d− 1}, [d− 2] ∪ {d}}. Call S1 and S2 the two patterns, respectively,

and suppose we observe the collection of correlation matrices given by ΣS = (ΣS1
,ΣS2

). If we call

Σ̃ = (ΣS2
)|[d−2] − (ΣS1

)|[d−2],

where (ΣSi
)|[d−2] is the restriction of ΣSi

on the set [d− 2], for i ∈ {1, 2}, then

R(ΣS) ≥
1

2d
∥Σ̃∥∗,

where ∥ · ∥∗ is the nuclear norm, also known as the Schatten-1 norm.

Proof of Example 7. Define

XS =

((
X 0d−2

0Td−2 0

)
,

(
−X 0d−2

0Td−2 0

))
,

where X ∈ Rd−2,d−2 and ∥X∥2 ≤ 1/2. Observe that this choice of XS is feasible since A∗XS = O ⪰ 0, and

XS +X0
S =

((
X + 1

2Id−2 0d−2

0Td−2 1

)
,

(
−X + 1

2Id−2 0d−2

0Td−2 1

))
⪰S 0,

since ∥X∥2 ≤ 1/2. It follows that

R(ΣS) ≥ sup
X=XT

∥X∥2≤1/2

−1

d
⟨XS,ΣS⟩S = sup

X=XT

∥X∥2≤1/2

1

d
⟨X, Σ̃⟩ = 1

2d
∥Σ̃∥∗,

where ∥ · ∥∗ is the nuclear norm and equality follows since the spectral norm and the nuclear norm are dual

with respect to the Frobenius inner product.
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Appendix B Another test under trace normalisation

In the main body we were dealing with the incompatibility measure R, which acts on correlation matrices,

normalised in a such a way that diagonal elements are all equal to one. Nonetheless, other standardisations

are possible, and these lead to different compatibility measures. In this section, we will define another mea-

sure of compatibility R̃(·), study its properties, and use it to define a testing procedure. Similarly to Table

1 in the main body, refer to Table 2 for all the new algebraic definitions needed in this section.

Notation Definition Meaning

t̄r : MS → R t̄r(XS) =
∑d
j=1 |Sj |−1

∑
S∈Sj (XS)jj Generalisation of the trace such that, if ΣS

is compatible, then t̄r(ΣS) is equal to the
trace of the underlying true covariance ma-
trix

P̃ {Σ ∈ P∗ : tr(Σ) = d} Set of PSD matrices with fixed scale

P̃S {ΣS ∈ P∗
S : t̄r(ΣS) = d} collections of PSD matrices with scale fixed

P̃0
S {AΣ : Σ ∈ P̃} Same as P0

S , but Σ has fixed scale

Table 2: Table with all the definitions needed in Appendix B.

The linear operator t̄r satisfies the following:

Proposition 22. The following hold:

(i) If we define X0
S ∈ MS by taking X0

S to be the diagonal matrix with (X0
S)jj = 1/|Sj |, we have

t̄r(XS) = ⟨XS, X
0
S ⟩S

for all XS ∈ MS.

(ii) Suppose that XS is consistent, meaning that (XS1
)jj′ = (XS2

)jj′ whenever S1, S2 ∈ Sjj′ , and write

Xpartial for the incomplete d× d matrix with (Xpartial)jj′ = (XS)jj′ for any S ∈ Sjj′ . Then

t̄r(XS) = tr(Xpartial) and ⟨XS, YS⟩S = ⟨Xpartial, A∗YS⟩

for any YS ∈ MS.

Proof of Proposition 22. Now for any XS ∈ MS we see that

⟨XS, X
0
S ⟩S =

∑
S∈S

∑
j∈S

(XS)jj(X
0
S)jj =

d∑
j=1

|Sj |−1
∑
S∈S

1{j∈S}(XS)jj = t̄r(XS),

proving property (i). The first part of (ii) can be seen immediately from the definition of t̄r. For the second

part, write

⟨XS, YS⟩S =
∑
S∈S

∑
j,j′∈S

(XS)jj′(YS)jj′ =

d∑
j,j′=1

(Xpartial)jj′
∑
S∈S

1{j,j′∈S}(YS)jj′ = ⟨Xpartial, A∗YS⟩.
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Now, suppose that ΣS is such that t̄r(ΣS) = d, where t̄r(XS) =
∑d
j=1 |Sj |−1

∑
S∈Sj (XS)jj , with Sj :=

{S ∈ S : j ∈ S}, and define

R̃(ΣS) := sup

{
−1

d
⟨XS,ΣS⟩S : XS +X0

S ⪰S 0, A∗XS ⪰ 0

}
.

This new measure of incompatibility has the following dual representation:

Proposition 23. For ΣS ∈ P̃S we have

R̃(ΣS) = inf{ϵ ∈ [0, 1] : ΣS ∈ (1− ϵ)P̃0
S + ϵP̃S}.

Proof of Proposition 23. As in the proof of Proposition 5, the strategy is to write this optimisation problem

sup

{
−1

d
⟨XS,ΣS⟩S : XS +X0

S ⪰S 0, A∗XS ⪰ 0

}
(42)

in standard SDP form, prove that the dual problem is precisely

1− 1

d
sup{tr(Σ) : Σ ∈ P∗,ΣS −AΣ ⪰S 0}, (43)

and then show that Slater’s condition is satisfied for the primal problem (42). Calling YS = XS + X0
S , we

have that

sup

{
− 1

d
⟨XS,ΣS⟩S : XS +X0

S ⪰S 0, A∗XS ⪰ 0

}
= sup

{
−1

d
⟨YS,ΣS⟩S +

1

d
⟨X0

S ,ΣS⟩S︸ ︷︷ ︸
=t̄r(ΣS)=d

: YS ⪰S 0, A∗YS ⪰ Id

}

= 1− 1

d
inf

{
⟨YS,ΣS⟩S : YS ⪰S 0, A∗YS − Z = Id, for some Z ⪰ 0

}
.

We write this optimisation problem in standard SDP form as follows: enumerate S as {S1, . . . , Sm}, and
define

X :=


YS1

· · · 0 0
...

. . .
...

...

0 · · · YSm 0

0 · · · 0 Z

 ,

so that ⟨YS,ΣS⟩S = ⟨X,C⟩, where

C :=


ΣS1

· · · 0 0
...

. . .
...

...

0 · · · ΣSm
0

0 · · · 0 0

 .
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As for the constraints, they are equivalent to X ⪰ 0 and ⟨X,Ajj′⟩ = δjj′ , for j, j
′ ∈ [d], with

Ajj
′
:=


ES1,jj′ · · · 0 0

...
. . .

...
...

0 · · · ESm,jj′ 0

0 · · · 0 −Ejj′

 ,

where Ejj′ = (eje
T
j′ + ej′e

T
j )/2 is the symmetric matrix of the same dimension as Z with its only non-zero

entries being in the (j, j′)-th and (j′, j)-th positions, and where ES,jj′ = (eS,je
T
S,j′ + eS,j′e

T
S,j)/2 is the

symmetric matrix of the same dimension as YS with its only non-zero entries being in the (j, j′)-th and

(j′, j)-th positions of YS . Then, the standard dual problem is

sup

{ ∑
j,j′∈[d]

δj,j′Yj,j′ : C −
∑

j,j′∈[d]

Yj,j′A
jj′ ⪰ 0

}

= sup

{
tr(Y ) : ΣS −

1

2
A
(
Y + Y T

)
⪰S 0,

(
Y + Y T

)
⪰ 0

}
= sup

{
tr(W ) : ΣS −AW ⪰S 0,W ⪰ 0

}
,

where we made the substitution W =
(
Y + Y T

)
/2 and used the fact that tr(W ) = tr(Y )/2 + tr(Y T )/2 =

tr(Y ). This shows that (43) is the dual problem of (42). As in the proof of Proposition 5, the result

follows upon noticing that the primal problem (42) is strictly feasible, since YS = X0
S ≻S 0 is such that

A∗YS = Id ⪰S Id, which ensures that strong duality holds.

As before, we can prove some properties for R̃(·)

Proposition 24. The following hold:

(i) R̃ is convex.

(ii) R̃ is continuos.

(iii) If S ⊆ S′ and ΣS ⊆ ΣS′ , then R̃(ΣS) ≤ d′R̃(ΣS′)/d, where d
′ = card(∪S∈S′S) and d = card(∪S∈SS).

Proof of Proposition 24. (i) and (ii) are essentially the same as in Proposition 6. To prove (iii), let X̃
(1)
S

be a feasible point of {XS +X0
S ⪰S 0, A∗XS ⪰ 0}, and define X̃

(2)
S′ := (X̃

(1)
S ,O, · · · ,O), where we added a

compatible zero matrix O for every element in SC∩S′. Then, X̃(2)
S′ +X0

S′ ⪰S′ 0 is equivalent to X̃
(1)
S +X0

S ⪰S 0

and X0
S′\S ⪰S′\S 0, which are satisfied, while A∗

S′X̃
(2)
S′ = A∗

SX̃
(1)
S ⪰ 0, since X̃

(1)
S is feasible. Hence, X̃

(2)
S′ is

feasible for Σ
(2)
S′ , and the thesis follows from the fact that the normalising constant changes from 1/d to

1/d′. Observe that the dual representation given by Proposition 23 allows proving the statement differently.

Indeed, let Σ ⪰ 0 ∈ Rd′,d′ be such that tr(Σ) = d′ and

ΣS′ = (1− λ′)AS′Σ
′ + λ′Σ̃S′ ,
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where Σ̃S′ ⪰S′ 0 and λ′ = R(ΣS′). Then, since S ⊆ S′, we can automatically write also ΣS in this form as

ΣS = (1− λ′)ASΣ+ λ′Σ̃S,

where Σ results from deleting all rows and columns of Σ′ associated to every element i /∈ ∪S∈S′S \ ∪S∈SS,

and is ensured to be non-negative definite by Cauchy interlacing theorem. Then, calling σ2
i the diagonal

elements of (1− λ′)Σ′,

R̃(ΣS) ≤ 1− 1

d

∑
i∈∪S∈SS

σ2
i ≤ 1− 1

d

∑
i∈[d′]

σ2
i − (d′ − d)


= 1− 1

d

(
d(1− R̃(ΣS′))− (d′ − d)

)
=
d′

d
R̃(ΣS′).

We conclude the analysis of R̃ showing that it can be highly complex even for very simple settings.

Figure 16: Graph associated to the pattern S = {{1, 2}, {1, 3}}.

Example 8. Consider S = {{1, 2}, {1, 3}}, which is associated to the graph in Figure 16, and suppose

without loss of generality that we observe

Σ{1,2} =

(
σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2

)
, Σ{1,3} =

(
σ̃2
1 ρ13σ̃1σ2

ρ12σ̃1σ2 σ2
3

)

with σ̃2
1 ≥ σ2

1. Let θ, ϕ ∈ [0, π/2] be such that cos θ = σ1/σ̃1 and cosϕ = |ρ13|. Then we have

R(ΣS) =
1

6
(σ̃2

1 − σ2
1) +

1

3
σ2
3 sin

2
(
(θ − ϕ)+

)
.

Proof of Example 8. We prove this statement by giving an optimal choice of XS for the primal problem and

an optimal choice of Σ for the dual problem. It turns out that the optimal XS is of the form

XS =

((
λ 0

0 0

)
, uuT −

(
λ 0

0 0

))

for λ ∈ R and v ∈ R2. Given v ∈ R2, we take λ = 1/2+3v21/(1+ 3v22) as this is the maximal value for which
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XS +X0
S ⪰S 0. It is clear that A∗XS ⪰ 0, so this choice of λ always leads to a feasible XS. When ϕ ≥ θ we

will simply take λ = 1/2 and v = 0 to recover the same feasible solution as for R̄ and the simple lower bound

R(ΣS) ≥ (1/6)(σ̃2
1 − σ2

1). When ϕ = 0 (so that |ρ13| = 1) we take v = µ(σ3/σ̃1,− sgn(ρ13)) with µ → ∞ to

see that

R(ΣS) ≥ sup
µ≥0

(
1

6
+ µ2 σ

2
3/σ̃

2
1

1 + 3µ2

)
(σ̃2

1 − σ2
1) = (1/6)(σ̃2

1 − σ2
1) + (1/3)σ2

3(1− σ2
1/σ̃

2
1),

which matches our claim. When θ > ϕ > 0 we choose

v =

√
sin(θ − ϕ)

cos(θ) sin(ϕ)

(
(σ3/σ̃1) cos(θ − ϕ)

− sgn(ρ13) cos(θ)

)
.

Using trigonometric identities, it can be seen that λ = 1/2 + (σ2
3/σ̃

2
1)

sin(θ−ϕ) cos(θ−ϕ)
sin(θ) cos(θ) and

R(ΣS) ≥ −(1/3)⟨XS,ΣS⟩S
= (1/3)

{
λσ̃2

1 sin
2(θ)− v21 σ̃

2
1 − 2v1v2σ̃1σ3 cos(ϕ) sgn(ρ13)− v22σ

2
3

}
=

1

6
σ̃2
1 sin

2(θ) +
1

3
σ2
3

sin(θ − ϕ)

cos(θ) sin(ϕ)

{
cos(θ − ϕ) sin(θ) sin(ϕ)− cos2(θ − ϕ)

+ 2 cos(θ − ϕ) cos(θ) cos(ϕ)− cos2(θ)
}

=
1

6
σ̃2
1 sin

2(θ) +
1

3
σ2
3 sin

2(θ − ϕ).

We have now provided the required lower bound in all cases, and turn to the upper bound through the dual

problem. Start first with the case that ϕ ≥ θ. Then σ̃1|ρ13| ≤ σ1 so that

Σ =

 σ2
1 ρ12σ1σ2 σ1σ3

σ̃1ρ13
σ1

ρ12σ1σ2 σ2
2 σ2σ3ρ12

σ̃1ρ13
σ1

σ1σ3
σ̃1ρ13
σ1

σ2σ3ρ12
σ̃1ρ13
σ1

σ2
3


is a valid covariance matrix. We have

ΣS −AΣ =

(
O2,2,

(
σ̃2
1 − σ2

1 0

0 0

))
⪰S 0

so Σ is feasible. Thus, when ϕ ≥ θ, we have

R(ΣS) ≤ 1− 1

3
tr(Σ) =

σ̃2
1 + σ2

1

6
+
σ2
2 + σ2

3

3
− 1

3
(σ2

1 + σ2
2 + σ2

3) =
1

6
(σ̃2

1 − σ2
1)

as required. When ϕ < θ we consider

Σ =

 σ2
1 ρ12σ1σ2 σ1σ3 cos(θ − ϕ) sgn(ρ13)

ρ12σ1σ2 σ2
2 σ2σ3ρ12 cos(θ − ϕ) sgn(ρ13)

σ1σ3 cos(θ − ϕ) sgn(ρ13) σ2σ3ρ12 cos(θ − ϕ) sgn(ρ13) σ2
3 cos

2(θ − ϕ)

 ,

which is a covariance matrix so Σ ⪰ 0. Clearly (AΣ){1,2} = Σ{1,2}. It follows from trigonometric identities
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that

σ̃1σ3ρ13 − σ1σ3 cos(θ − ϕ) sgn(ρ13) = σ̃1σ3 sgn(ρ13){cos(ϕ)− cos(θ) cos(θ − ϕ)}

= σ̃1σ3 sgn(ρ13) sin(θ) sin(θ − ϕ)

so that

Σ{1,3} − (AΣ){1,3} =

(
σ̃2
1 sin

2(θ) σ̃1σ3 sgn(ρ13) sin(θ) sin(θ − ϕ)

σ̃1σ3 sgn(ρ13) sin(θ) sin(θ − ϕ) σ2
3 sin

2(θ − ϕ)

)
,

which is a covariance matrix so is positive semi-definite. Thus Σ is feasible and when ϕ < θ we have

R(ΣS) ≤ 1− 1

3
tr(Σ) =

σ̃2
1 + σ2

1

6
+
σ2
2 + σ2

3

3
− 1

3
{σ2

1 + σ2
2 + σ2

3 cos
2(θ − ϕ)}

=
1

6
(σ̃2

1 − σ2
1) +

1

3
sin2(θ − ϕ),

as required.

Now, the goal of this subsection is to develop an analogous oracle test for the measure R̃, under the usual

hypothesis of ΣS ⪰S cIS, with c > 0. In this case, the maximum is attained in the set

Hc := {XS +X0
S ⪰S 0, A∗XS ⪰ 0, ⟨XS +X0

S , cIS⟩S ≤ d},

hence the only difference with Fc is that A∗XS + Y ⪰ 0 for some Y ∈ Y is substituted by A∗XS ⪰ 0.

Hence, since in the previous subsection we discarded the condition A∗XS + Y ⪰ 0 for some Y ∈ Y, if we

now discard A∗XS ⪰ 0, all the previous steps remain valid for controlling PH0

{
R̃(Σ̂S) ≥ Cα

}
, so that we

can again reduce this problem to bounding maxS∈S ∥Σ̂S − ΣS∥2, with the only difference that now ΣS is

related to the corresponding covariance matrix through a different normalisation. Repeating the same steps

that lead to the proof of Theorem 7, we can prove the following result, which gives the right separation to

test compatibility based on R̃.

Proposition 25. Suppose we observe XS,1, . . . , XS,nS

i.i.d.∼ PS ,∀S ∈ S independently, where each PS is

ν-subgaussian with mean µS and ν ≫ 1, with the collection of population covariance matrices ΣS satisfying

t̄r(ΣS) = d, and ΣS ⪰S cIS, for a given c > 0. Let Σ̂S be the collection of sample covariance matrix associated

to each pattern S ∈ S, nS the collection of sample sizes, and suppose that also Σ̂S are normalised so that

t̄r(Σ̂S) = d. Then, for all α ∈ (0, 1), the test that rejects H0 : R̃(ΣS) = 0 if and only if R̃(Σ̂S) ≥ Cα has Type

I error bounded by α, where

Cα =
C1ν

2

c
max
S∈S

√
|S|+ log(|S|/α)

nS
∨ |S|+ log(|S|/α)

nS
,

and C1 > 0 is a universal constant. Moreover, for β ∈ (0, 1), if R̃(ΣS) > Cα+Cβ, then P{R̃(Σ̂S) ≤ Cα} ≤ β.

The proof is essential analogous to the one of Theorem 7, except for the fact that now we used directly

Proposition 32 in Appendix D instead of Proposition 14. Also, observe that the separation rate in this case
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is analogous to the one we found in Theorem 7, being of the order of

Cα ≲ max
S∈S

√
|S|+ log(|S|/α)

nS
,

under nS ≳ |S| for all |S| ∈ S, which is necessary to have a consistent test. As far as the drawbacks are

concerned, notice that here we need to normalise the sample covariance matrix a priori, so that t̄r(Σ̂S) = d,

which is somehow annoying. What is even more disturbing is the hypothesis that the subgaussian proxy ν2

needs to be significantly bigger than one, due to the fact that for a ν-subgaussian random variable X we

have Var[X] ≤ ν2. Hence, the hypothesis ν2 ≫ 1 is necessary to have a little flexibility in the variances,

while still satisfying t̄r(Σ̂S) = d. There is no reason to assume that ν2 ≫ 1, so that this is another point in

favour of the incompatibility measure R.

Appendix C Auxiliary results in SDP

Semi-definite programs are linear optimisation problems over spectrahedra, i.e. sets of the form

S =

{
(x1, . . . , xm) ∈ Rm : A0 +

m∑
i=1

Aixi ⪰ 0

}
,

for some given symmetric matrices A0, A1, . . . , Am. An SDP problem in standard primal form is written asminimize ⟨C,X⟩

subject to X ⪰ 0 and ⟨Ai, X⟩ = bi, i ∈ [m],

where C,Ai are given symmetric matrices, and bi are given scalars. For every semi-definite program in

primal form, there is another associated SDP, called the dual problem, that can be stated as maximize bT y

subject to
∑m
i=1Aiyi ⪯ C,

where b = (b1, . . . , bm), and y = (y1, . . . , ym) are the dual decision variables. As in linear programming, the

so-called weak duality holds, meaning that if X and y are any two feasible solutions of the primal and dual

problems respectively, we have

⟨C,X⟩ − bT y = ⟨C,X⟩ −
m∑
i=1

yi ⟨Ai, X⟩ =

〈
C −

m∑
i=1

Aiyi, X

〉
≥ 0.

Unfortunately, the equality is not always satisfied in general (see Example 2.14. in Blekherman et al. (2012)),

but under some mild conditions, strong duality holds. One of such conditions is Slater’s condition, where

either the primal or the dual problem is required to be strictly feasible, meaning that there exists eitherX ≻ 0

for the primal problem satisfying ⟨Ai, X⟩ = bi, for i ∈ [m], or y for the dual satisfying
∑m
i=1Aiyi ≺ C. If

this is the case, it can be shown that strong duality holds (Theorem 2.15. in Blekherman et al. (2012),
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Theorem 3.1. in Vandenberghe and Boyd (1996)). Furthermore, if the primal is strictly feasible, then the

dual optimum is attained, and viceversa. In the proof, we show that it is possible to define R as the optimal

value of an SDP problem written in primal form, find its dual and show that Slater’s condition is satisfied.

This, apart from enabling us to prove Proposition 5, ensures that R can be computed explicitly using

standard SDP libraries, which are available for almost all programming languages. As for the computational

cost, for SDP problems in their general setting, without extra assumptions like strict complementarity, no

polynomial-time algorithms are known, and there are examples of SDPs for which every solution needs

exponential space (Khachiyan and Porkolab, 1997). Moreover, Ramana (1997) showed that SDP lies either

in the intersection of NP and co-NP, or outside the union of NP and co-NP, and nothing better than this is

known. Luckily, if Slater’s condition is satisfied, like in our case, then the primal-dual interior point method

has a computational complexity which is polynomial in the number of constraints and the dimension of the

unknown square matrix (Section 6.4.1. of Nesterov and Nemirovskii (1994), Section 5.7. of Vandenberghe

and Boyd (1996)), which ensures that R can be always computed efficiently without additional assumptions.

Finally, we recall Farkas’ lemma for SDP problems, and its proof, following Lemma 6.3.2 in Lovász (2003).

Proposition 26 (Farkas’ lemma for Semi-definite Programming). Let A1, . . . , An be symmetric m × m

matrices. The system

x1A1 + . . .+ xnAn ≻ 0

has no solution in x1, . . . , xn if and only if there exists a symmetric matrix Y ̸= 0 such that

⟨A1, Y ⟩ = 0

⟨A2, Y ⟩ = 0
...

⟨An, Y ⟩ = 0

Y ⪰ 0.

Proof. The set P∗
m of m×m positive semi-definite matrices forms a closed convex cone. If

x1A1 + . . .+ xnAn ≻ 0

has no solution, then the linear subspace L of matrices of the form x1A1 + . . . xnAn is disjoint from the

interior of P∗
m, which in turn implies that L is contained in a hyperplane that is disjoint from the interior of

P∗
m. This hyperplane can be described as {X ∈ P∗

m : ⟨Y,X⟩ = 0} for a certain symmetric Y , where we may

assume that ⟨Y,X⟩ ≥ 0 for every X ∈ P∗
m. Then, since a matrix A is positive semi-definite if and only if

⟨A,B⟩ ≥ 0 for every positive semi-definite matrix B, we conclude that Y ̸= 0, Y ⪰ 0, and, since Ai belong

to L, that ⟨Ai, Y ⟩ = 0.
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Appendix D Technical inequalities

Proposition 27 (Tail bound for a sum of subgausssian RVs). Suppose that the variables Xi, i = 1, . . . , n,

are independent, and Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0, we have

P

{
n∑
i=1

(Xi − µi) ≥ t

}
≤ exp

{
− t2

2
∑n
i=1 σ

2
i

}
.

Proof. See Proposition 2.5 in Wainwright (2019).

Proposition 28 (Euclidean norm of a subgaussian RV). Let X ∈ Rd be a subgaussian random vector with

proxy σ2. Then, for all δ ∈ (0, 1), we have

P
{
∥X∥2 > 4σ

√
d+ 2σ

√
log(1/δ)

}
≤ δ.

Equivalently, for all t > 0 we have

P {∥X∥2 > t} ≤ 5d exp
{
−t2/8σ2

}
.

Proof. We break the proof up into two steps: use a discretisation argument to reduce the problem to the

task of computing the maximum of finitely many random variables, and then use standard concentration

inequalities. Firstly, let Nϵ be an ϵ-net of the d-dimensional sphere Sd−1. Then,

∥X∥2 ≤ 1

1− ϵ
max
v∈Nϵ

vTX.

This follows from a discretization argument, similar to the one used in the proof of Proposition 32. Choosing

ϵ = 1/2 gives

P {∥X∥2 > t} ≤ |N1/2| exp
{
− t2

8σ2

}
≤ 5d exp

{
− t2

8σ2

}
.

Inverting the bound yields the first claim.

Proposition 29 (Tail bound for Binomial RVs). Let X ∼ Bin(n, n−1). Then, for all t ≥ 1, we have

P {X > t} ≤ et−1

tt
.

Proof. By the standard Chernoff argument, for all λ > 0 we have

P {X > t} ≤ e−λtE[eλX ] = e−λt(1− n−1 + n−1eλ)n

≤ e−λtee
λ−1 = e−λt+e

λ−1,

where in the last inequality we used the fact that 1 + x ≤ ex. Choosing λ = log t concludes the proof.

Proposition 30 (Tail bound for a sum of subexponential RVs). Consider an independent sequence {Xk}nk=1

of random variables, such that Xk has mean µk, and is sub-exponential with parameters (vk, αk). Then,
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∑n
k=1 (Xk − µk) is sub-exponential with the parameters (v∗, α∗), where

α∗ := max
k=1,...,n

αk and v∗ :=

√√√√ n∑
k=1

v2k,

and

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xk − µk)

∣∣∣∣∣ ≥ t

}
≤

2e
−n2t2

2v2
∗ for 0 ≤ t ≤ v2∗

nα∗

2e−
nt
2α∗ for t >

v2∗
nα∗

.

Proof. See equation (2.18) in Wainwright (2019).

Proposition 31 (The square of a subgaussian is subexponential). If X is σ-subgaussian, then X2 is subex-

ponential with parameters (ν, α) = (4
√
2σ2, 4σ2).

Proof. Using the definitions of the Orlicz norm ∥ · ∥ψ1 and ∥ · ∥ψ2 (see Wainwright (2019); Vershynin (2019)),

it is easy to prove that the product of two subgaussian RVs is subexponential (Lemma 2.7.7. in Vershynin

(2019)), and that X is subgaussian if and only if X2 is subexponential (Lemma 2.7.6. in Vershynin (2019)).

As for its subexponential parameters, assuming WLOG that X has mean zero, we know that

E
[
eλX

]
≤ e

1
2λ

2σ2

, for all λ ∈ R.

Our goal is to find a similar bound for the moment generating function of X2, and, to this aim, we will make

use of the fact that the moments of X are bounded as follows

E [|X|r] ≤ r2r/2σrΓ(r/2), for all r > 0,

where Γ(r) is the Gamma function. Now, calling µ = E[X2], by power series expansion and since Γ(r) =

(r − 1)! for an integer r, we have

E
[
eλ(X

2−µ)
]
= 1 + λE

[
X2 − µ

]
+

∞∑
r=2

λrE
[(
X2 − µ

)r]
r!

≤ 1 +

∞∑
r=2

λrE
[
|X|2r

]
r!

≤ 1 +
∞∑
r=2

λr2r2rσ2rΓ(r)

r!

= 1 +

∞∑
r=2

λr2r+1σ2r = 1 +
8λ2σ4

1− 2λσ2
.

By making |λ| ≤ 1/4σ2, we have 1/
(
1− 2λσ2

)
≤ 2. Finally, since for every α ∈ R it holds 1 + α ≤ eα, we

have that the MGF of X2 satisfies

E
[
eλ(X

2−E[X2])
]
≤ e16λ

2σ4

, for all |λ| ≤ 1/
(
4σ2
)
.

Thus, we obtained a bound for the moment generating function of the subexponential variable X2, that is

similar to that of subgaussian variables but holds only for a small range of λ.
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Proposition 32 (Concentration inequality for Covariance Matrices). Let X1, . . . , Xn be an i.i.d sequence

of σ-subgaussian random vectors with zero mean and covariance matrix Ω, and let Ω̂n := 1
n

∑n
i=1XiX

T
i be

the sample covariance matrix. Then there exists a universal constant C > 0 such that, for δ ∈ (0, 1), with

probability at least 1− δ

∥Ω̂n − Ω∥2 ≤ Cσ2 max

{√
d+ log(2/δ)

n
,
d+ log(2/δ)

n

}
.

Equivalently, for all t > 0 we have

P
{
∥Ω̂n − Ω∥2 ≥ t

}
≤ 2 · 9d exp

{
−nmin

{(
t

16σ2

)2

,
t

16σ2

}}
.

Proof. We break the proof up into two steps: use a discretisation argument to reduce the problem to the

task of computing the maximum of finitely many random variables, and then use standard concentration

inequalities. Firstly, let A ∈ Sd×d and let Nϵ be an ϵ-net of the d-dimensional sphere Sd−1. Then

∥A∥2 ≤ 1

1− 2ϵ
max
y∈Nϵ

∣∣yTAy∣∣ .
Indeed, let y ∈ Nϵ satisfy ∥x− y∥ ≤ ϵ. Then∣∣xAx− yTAy

∣∣ = ∣∣xTA(x− y) + yTA(x− y)
∣∣

≤
∣∣xTA(x− y)

∣∣+ ∣∣yTA(x− y)
∣∣

Looking at
∣∣xTA(x− y)

∣∣ we have

∣∣xTA(x− y)
∣∣ ≤ ∥A(x− y) | ∥∥x∥

≤ ∥A∥2 ∥x− y∥︸ ︷︷ ︸
≤ϵ

∥x∥︸︷︷︸
=1

≤ ∥A∥2ϵ

Applying the same argument to
∣∣yTA(x− y)

∣∣ gives us
∣∣xAx− yTAy

∣∣ ≤ 2ϵ∥A∥2. To complete the proof,

we see that ∥A∥2 = maxx∈Sd−1 xTAx ≤ 2ϵ∥A∥2 + maxy∈Nϵ y
TAy. Rearranging the equation gives ∥A∥2 ≤

1
1−2ϵ maxy∈Nϵ

yTAy as desired. Then, if we apply this result to Ω̂n − Ω with ϵ = 1/4 we have

∥Ω̂n − Ω∥2 ≤ 2 max
v∈N1/4

∣∣∣vT (Ω̂n − Ω
)
v
∣∣∣

Additionally, we know that card(N1/4) ≤ 9d (see Lemma 5.7 and Example 5.8 in Wainwright (2019). From

here, we can apply standard concentration tools to get

P
{
∥Ω̂n − Ω∥2 ≥ t

}
≤ P

(
max
v∈N1/4

∣∣∣vT (Ω̂n − Ω
)
v
∣∣∣ ≥ t/2

)
≤ card(N1/4) · P

(∣∣∣vTi (Ω̂n − Ω
)
vi

∣∣∣ ≥ t/2
)
,
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where vi is a unit vector on the d-dimensional sphere. Now, vTi

(
Ω̂n − Ω

)
vi can be rewritten as

vTi

(
Ω̂n − Ω

)
vi =

1

n

n∑
j=1

(
vTi Xj

)2 − E
[(
vTi Xj

)2]
=

1

n

n∑
j=1

Zj − E [Zj ] ,

where the Zj − E [Zj ] are independent subexponential of parameters (ν, α) =
(
4
√
2σ2, 4σ2

)
, since vTi Xj

are σ-subgaussian by definition of subgaussian random vector. Applying the subexponential tail bound in

Proposition 30 gives us

P
{∣∣∣vTi (Ω̂n − Ω

)
vi

∣∣∣ ≥ t/2
}
≤ 2 exp

{
−nmin

{(
t

16σ2

)2

,
t

16σ2

}}
.

so that

P
{
∥Ω̂n − Ω∥2 ≥ t

}
≤ 2 · 9d exp

{
−nmin

{(
t

16σ2

)2

,
t

16σ2

}}
.

Inverting the bound gives the first result. For further reference, please refer to Chapter 3 in Wainwright

(2019).

Proposition 33 (Theorem 3.1 in Rudelson and Vershynin (2007)). Let X be a random vector in Rd, which
is uniformly bounded almost everywhere: ∥X∥2 ≤ M . Assume for normalisation that ∥EXXT ∥2 ≤ 1. Let

X1 . . . Xn be independent copies of X. Then, for every t ∈ (0, 1), there exists a universal constant K > 0

such that

P

{∥∥∥∥∥ 1n
n∑
i=1

XiX
T
i − EXXT

∥∥∥∥∥
2

> t

}
≤ 2 exp

{
− Knt2

M2 log n

}
.
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