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Abstract

We study the problem of testing whether the missing values of a potentially high-dimensional dataset
are Missing Completely at Random (MCAR). We relax the problem of testing MCAR to the problem of
testing the compatibility of a collection of covariance matrices, motivated by the fact that this procedure
is feasible when the dimension grows with the sample size. Our first contributions are to define a natural
measure of the incompatibility of a collection of correlation matrices, which can be characterised as the
optimal value of a Semi-definite Programming (SDP) problem, and to establish a key duality result
allowing its practical computation and interpretation. By analysing the concentration properties of the
natural plug-in estimator for this measure, we propose a novel hypothesis test, which is calibrated via
a bootstrap procedure and demonstrates power against any distribution with incompatible covariance
matrices. By considering key examples of missingness structures, we demonstrate that our procedures are
minimax rate optimal in certain cases. We further validate our methodology with numerical simulations
that provide evidence of validity and power, even when data are heavy tailed. Furthermore, tests of
compatibility can be used to test the feasibility of positive semi-definite matrix completion problems

with noisy observations, and thus our results may be of independent interest.

1 Introduction

Incomplete data are a common occurrence in almost all areas of statistical application, and the mechanisms
leading to such data are diverse. For example, subjects in a survey may choose not to respond to cer-
tain questions, leading to missing values, or a practitioner may wish to combine data collected in different
studies, where different variables were recorded in each. With incomplete data, traditional approaches be-
come unreliable or even inapplicable, leading to a significant effect on the conclusions that can be drawn
from the data. The most common approaches to dealing with missing values are to remove any incomplete
observations, and thus to perform a complete-case analysis, or to replace any missing entry with a represen-
tative value, using an imputation method (e.g. Yates, 1933; van Buuren and Groothuis-Oudshoorn, 2011;
Stekhoven and Bithlmann, 2011). However, the validity of such procedures, and the choice of an appropriate
one, depends crucially on the mechanism that determines the missingness. Mechanisms have traditionally
been classified as Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At
Random (MNAR) (e.g. Little and Rubin, 2002) according to the dependence structure between the variables



themselves and their missingness, with such assumptions being required to link observations to targets of
inference.

The typical formal setting is to suppose that we observe independent and identically distributed copies
of a random object X o), where X takes values in some product space X = H?Zl &, where 2 takes values

in {0,1}¢ and where we define the operator o by

xz; ifw; =1,

(Tow); =
NA if OJj =0.

The assumptions named above then control the dependence between the data X and the missingness indicator
Q. The simplest case of MCAR is when these are independent, denoted X 1l €2, so that the data we observe
is representative of the population, even if it is incomplete*. Under MCAR we can often employ statistical
methodologies that are easy to interpret and make good use of all incomplete data, with solid theoretical
guarantees having been developed in various modern statistical problems such as high-dimensional regression
(Loh and Wainwright, 2012), high-dimensional or sparse principal component analysis (Zhu et al., 2022;
Elsener and van de Geer, 2019), classification (Cai and Zhang, 2019; Sell et al., 2024), and precision matrix
and changepoint estimation (Follain et al., 2022). MCAR also allows for the use of a simple complete-case
analysis which, in certain cases, such as when we have small sample sizes, can be preferable to complex
procedures (e.g. Aleksi¢ et al., 2023). However, if MCAR does not hold, which is common in practice,
alternative methods may be required.

Hypothesis tests can be used to guide practitioners in deciding whether or not missingness assumptions
are reasonable. The goal of this work is to study the problem of testing the hypothesis of MCAR, which has
been the subject of much research in the missing data literature. Most prior work has been developed within
the context of parametric models. For example, Little (1988) works under the hypothesis that the data are
Gaussian in the setting that all pairs of variable are observed together (see Section 6 for further details).
Fuchs (1982) considers discrete data in the setting that a large number of complete cases are available.
In both cases the methods are likelihood ratio tests, with the MLEs calculated using the EM algorithm
(Dempster et al., 1977) and validity and power guarantees based on classical asymptotics. More recently,
Berrett and Samworth (2023) provided a nonparametric formulation of the problem and methodology that
was proved to be widely powerful under minimal assumptions. The key insight of Berrett and Samworth
(2023) is to relate the problem of testing MCAR to the problem of testing compatibility, for which we now
recall the definition. For S C [d] := {1,...,d} denote by {Q = 1g} the event that X is observed if and only
if j €8, write S ={S : P(Q = 1g) > 0} for the set of all possible observation patterns and write Pg for
the distribution of the observation Xg|{Q? = 1g5}. We say that the collection (Ps : S € S) is compatible if
there exists a distribution P on X with marginal distribution Ps on Xg for all S € S. Under MCAR, the
distribution Ps is equal to the marginal distribution of the population distribution £(X) on Xs := [] jes Xj,
so it must be the case that (Ps : S € S) is compatible. Hence, if Ps := (Ps : S € S) is incompatible,
then the data cannot be MCAR. In fact, it is shown (Berrett and Samworth, 2023, Proposition 1) that
this reasoning is tight in that it is not possible to rule out MCAR based on observations of X o Q if Ps is

*This scenario is sometimes referred to as everywhere MCAR, which should not be confused with realised MCAR (see Seaman
et al. (2013) for a more detailed discussion on this distinction)



compatible. In general, fully testing the compatibility of a collection of distributions requires us to look at
complex interactions between the distributions, and methods for doing so will have sample complexity that
is exponential in the dimension d. Our work aims to provide methods that are valid and powerful without
strong assumptions while being effective as the dimension grows.

Our methodology will be based on testing the compatibility of collections of covariance matrices, which
can be estimated consistently even for large d. Earlier studies have employed the covariance matrix to
assess MCAR. As briefly discussed above, Little (1988) studied a likelihood ratio test of MCAR, effectively
examining the homogeneity of means and covariances under the assumption of normality. However, Little
expressed scepticism about its effectiveness unless the sample size is exceptionally large and the assumption
of normality holds. This scepticism was further validated in simulations by Kim and Bentler (2002), who
also developed a test for consistency of means and covariances based on generalised least squares. Both of
these approaches work by comparing the sample covariance matrix associated to a given missingness pattern
to the corresponding submatrix of an estimated complete covariance matrix. More recently, Jamshidian
and Jalal (2010) developed k-sample tests of the equality of covariance matrices, given complete data,
based on Hawkins’ test (Hawkins, 1981). Using empirical evidence, they then argued that these tests could
be combined with imputation techniques to test the homogeneity of covariance matrices calculated using
incomplete data. These methodologies can be effective when the corresponding assumptions are met and
when a complete covariance matrix can be consistently estimated.

Our method works by directly checking the compatibility of the observed sample covariance matrices,
making no assumptions on the form of the underlying distributions and not requiring the estimation of a
complete covariance matrix. In particular, this second point means that our test can be applied with any
collection S of missingness patterns. More precisely, at the population level, we will consider ¥g = (Xg: S €
S), a collection of suitably-normalised covariance matrices Yg associated to the law of Xg|{Q2 = 1s}, and
design a statistical test to check if ¥g is compatible, meaning that each g can be obtained by marginalising
a general d x d positive-semi-definite matrix X, i.e. (¥)s = Xg. If MCAR holds then for each S € S we
must have Cov(Xg|Q = 1g) = (Cov(X))s, the block of the covariance matrix of X corresponding to the
variables in S, so that the collection (X : S € S) must be compatible. Hence, if we can reject the hypothesis
Hy : Xs compatible, then we can reject the hypothesis of MCAR. See Figure 1 for a pictorial summary of the
key concepts so far.

More generally, one can consider the problem of testing the compatibility of moments of order p > 1
and, if it is found that these moments are incompatible, one can reject MCAR. For p = 1, this problem
reduces to testing the compatibility of mean vectors, which essentially boils down to testing the equality of
means. This has been studied in the statistical literature for over a century, and we refer to existing methods
for solving this problem (e.g. Wilks, 1946; Little, 1988). In order to have power against a wider range of
alternatives, while limiting the complexity of the testing procedure, we restrict attention in this work to the
natural p = 2 problem. Here there are still various ways in which compatibility can fail. For example, we
can rule out Hy if g is inconsistent, in the sense that that there are two observation patterns Si, Sy € S
for which (Xg,)s,ns, # (¥s,)s,ns,, meaning that there exists a pair of variables whose covariance takes
different values in different observation patterns. Testing the consistency of covariance matrices reduces to
testing the equality of smaller covariance matrices, which has again been previously studied (e.g. Hawkins,

1981). The corresponding nonparametric problem of testing the consistency of distributions was studied by
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Figure 1: Our framework. We relax the methodology in Berrett and Samworth (2023) and consider (suitably nor-
malised) covariance matrices instead of full distributions. The price we pay is to create an extra ring (red area) in
which we cannot detect departure from Hy just by looking at 3s. For example, if the collection of third-moment
tensors were inconsistent, but Xs were compatible, we would not be able to reject MCAR, although Ps would be
incompatible.

Li and Yu (2015); Spohn et al. (2021) in the context of testing MCAR. However, it is possible to test more
than consistency. As a concrete example, consider the case where d = 3, where S = {{1,2}, {1, 3},{2,3}},

1 g
Zij _ Pij
pij 1

with po3 = p13 = —p12 = p. Then g is compatible if and only if p < 1/2, even though it is always consistent.
This is because the only matrix ¥ such that (X)s = Xg for all S € S is

and where

L —p p
YX=1]-p 1 )
pp 1

whose eigenvalues are 1 + p and 1 — 2p, which therefore is not positive semi-definite if p > 1/2.

The above example is relatively simple because any pair of variables is observed together so that the full
covariance matrix can be estimated. However, we can characterise compatibility for any S (see Proposition 4).
While the compatibility of distributions can be characterised using linear programming (e.g. Kellerer, 1984),
characterising the compatibility of covariance matrices requires ideas from semi-definite programming (SDP),
which studies linear optimisation problems over spectrahedra (e.g. Blekherman et al., 2012; Vandenberghe
and Boyd, 1996). If X is consistent, compatibility is equivalent to the feasibility of a positive semi-definite
matrix completion problem, where we observe a partial symmetric matrix A = (a;;) for positions (¢, j)
in a certain set of edges, and aim to construct a positive semi-definite completion of A. This problem
is extensively studied owing to its widespread applications in diverse fields such as probability, statistics,

systems engineering and geophysics; see, for example, Laurent (2009) and the references therein for an



introduction to the topic. Statistical questions associated with such problems are relatively under-explored,
though we mention the recent work Waghmare and Panaretos (2022) that provides estimated completions
of covariance operators in settings where completions always exist. A distinct but related problem that has
received more attention in the statistics literature is low-rank matrix completion. In particular, significant
contributions (Candes and Recht, 2009; Candés and Tao, 2010; Recht, 2011) have been made in the realm
of convex optimization, where a low-rank matrix is recovered from partial observations after introducing a
nuclear norm penalty. In our work we make no low-rank assumptions and our main interest is in answering
the question of whether or not a positive semi-definite completion exists.

We now briefly outline our main contributions. In Section 2, we introduce a data-driven bootstrap test
for MCAR, detailed in Algorithm 1. We also state our main result (Theorem 1), that this procedure is
uniformly valid over expanding subsets of the null hypothesis, excluding distributions close to the boundary,
and uniformly powerful against alternatives separated from the null hypothesis. Additionally, we establish its
asymptotic validity over the entire null hypothesis in a specific example (Proposition 2). This test is based on
a numerical measure, R(Xs), which quantifies the incompatibility of a collection of correlation matrices Xs.
We define this measure in Section 3 and establish key properties, including a useful and interpretable dual
representation (Proposition 5). In Section 4, we shift our focus to the empirical estimation of this index and
analyse its concentration properties. Assuming non-singularity of the correlation matrices, ¥5 = cl|g) for all
S € S, we present an oracle test based on knowledge of ¢ > 0, and we state a result on its validity and power
(Theorem 7). This result is crucial for the proof of Theorem 1. In Section 5 we analyse the performance
of our oracle test in various examples and show that its separation rate is near-minimax optimal in some
cases, while studying properties of the associated semi-definite programmes. In Section 6 we validate our
methodology in numerical experiments. Section 7 contains the proofs of our main results. The Appendix
contains background and auxiliary results.

We conclude the introduction with some notation that is used throughout the paper. In general, we will
denote covariance matrices by Q and correlation matrices (or other suitably normalised covariance matrices)
by X. For d € N, we write [d] := {1,---,d}, and indicate with |B| the cardinality of the set B. Given
a,b >0, we write a < b to mean that there exists a universal constant C' > 0 such that a < Cb. We use a A b
for min{a, b}, and a Vv b for max{a,b}. We will denote with 04 the null vector of dimension d, with 14 the
all-one vector, with e; the j-th element of the canonical basis of R?, with Oy, 4, the zero matrix of dimension
dy x dg, with Oq4 := Og,4, and with I; the identity matrix of dimension d. We will omit the subscript with
the dimension d when it is clear from the context. For symmetric matrices A, B of dimension d, we write
A = 0 to mean that A is positive semi-definite, write A = B to mean that A — B > 0, write diag(A) to
indicate the vector whose elements coincide with the diagonal entries of the matrix A, and diag(v) for a
vector v = (v1,...,v4) to indicate a diagonal matrix with diagonal elements equal to v;. We will indicate
the trace of A with tr(A), the determinant with either |A| or det(A), and the minimum and maximum
eigenvalues of A with Apax(A) and Ayin(A), respectively. We use || - ||, for the I,-norm of a vector. We will
use || - ||« for nuclear norm, or Schatten-1 norm of a matrix, || - || for the spectral norm, and || - ||z for the
Frobenius norm. For random elements X,Y, we write X Il Y to mean that X and Y are independent. For

o > 0, a random variable X with mean p = E[X] is said to be o-subgaussian if

E [g(x—@] <e”N/2 forall \€R,



while, for (v,a) € (0,00)?, it is said to be (v, a)-subexponential if
v222 1
E {e’\(X_“)} <e for all |A] < —.
o

A random vector X in R” is said to be o-subgaussian if every one-dimensional projection, i.e. v X with

v € R™ and ||v|| = 1, is o-subgaussian in the sense defined above.

2 Statistical setting and bootstrap test of MCAR

We aim to test X 1L Q by examining the collection of suitably normalised covariance matrices across different
missingness patterns, and we will see in the sequel (e.g. Section 5) that the structure of these patterns has a
strong influence of the complexity of the problem. Instead of assuming that we have access to i.i.d. copies
from X o), it is convenient to condition on the realisations of €2, so that the collection of patterns S and the
samples sizes (ng : S € S) are fixed. This does not impose a significant constraint, and all the theoretical
results can be adapted to the unconditional model. We then assume that for each S € S we have access to
an independent sample
Xo1y- s Xsns = Pg

for some sample size ng and some distribution Ps with mean pg, correlation matrix g, vector of variances
0%, and covariance matrix Qg = diagl/Q(Jg) DI diagl/Q(Jg). We write [ig, f)s, 5% and QS for the sample
mean, the sample correlation matrix, the vector of sample variances and the sample covariance matrix,
respectively, of Xg1,..., Xgns for each S € S. Additionally, we write fis = (ig : S € S), &5 = (8g: S € S),
02 =(0%:595€S) and Qs = (ﬁs : S €8S) for the collections of these estimators.

We now propose a bootstrap test of MCAR that can be applied without any knowledge of unknown
parameters. This will be based on the incompatibility index R(:) € [0,1] defined in Section 3, which acts
on correlation matrices and characterises compatibility, in the sense that R(Xg) = 0 if and only if Xg is
compatible, and its regularised version R,(-) defined in Equation (7). Algorithm 1, which is implemented
the R-package MCARtest (Berrett et al., 2022), tackles the testing problem Hy : R(Xs) = 0 using as test
statistic the plug-in estimate R(ig), and is calibrated through a bootstrap procedure. As already outlined
in Section 1, rejection of Hy is sufficient to reject MCAR.

The intuition behind the procedure is as follows. From Proposition 5 in Section 3 we can write ig =
(1 7R(ig))@§+R(i§)§/S, where Qs can be thought as the closest compatible sequence of correlation matrices
to is, and can be computed at the same time as the test statistic R(ig), and i/s is an arbitrary sequence
of correlation matrices. If R(ig) > 3/4, we reject the null hypothesis outright, as there is strong evidence
against it. Otherwise, we proceed by calibrating our test using a bootstrap procedure. We transform the
original data by calculating Xg := @;/2251/2diag_1/2(8§)(X5 — nig) for all S € S. This transformation
means that the sample correlation matrices of Xg := (XS : S €8) are given by @S, which is compatible.
Fixing B € N, for each b € [B] and S € S we generate X éb) as a nonparametric bootstrap sample from Xg
and calculate the sample correlation matrix iS,b = SampleCorr(X éb)). Then, for each b € [B] we compute
the corresponding test statistic Rg/g(is)b : S € 8S). These will serve as surrogates of the null, and will
be employed to generate a p-value of the form pg = (1 + B)~(1 + Z{il ]].{R’c\/g(ig,b) > R(Ss)}). The



Algorithm 1 MCAR bootstrap test checking compatibility of correlation matrices

1: Given data Xg, discard all patterns S € S such that ns <|S|+1.

2: Compute ZS = SampleCorr Xs and ¢ = mlngeg /\mm(Es)

3: Compute R(ZS) and the dual decomposition S = (1 — R(Ss))Qs + R(S )

4: if R(Zg) > 3/4 then

5: return pr = 0.

6: else

7. Forall S €S, for all i € [ng] do Xg,; := QY °S5" *diag /2(62) (X5, — fis).
8: for b € [B] do

9: For all S €S, let Xéb) = (Xébz :i € [ng]) be a nonparametric bootstrap sample from Xg.
10: Compute fl&b = SampleCorr ngb).

11: Compute Rg/g (ESJ,).

12: end for

130 return pg = (1+ B) 1+, L{Re/2(Zsp) > R(Zs)}).

14: end if

reason why we are forced to use the regularised version Rz/s(-) at the bootstrap level instead of the standard
R(-), and why we treat the case R(ig) > 3/4 separately, is that it is notably challenging to characterise
the spectrum of @g This approach might inflate the size of our test in general. However, this inflation
is vanishingly small since Rg/z(igd) | Xs 5 R(ESJ) | Xs, as demonstrated, for instance, in the proof of
Proposition 2.

The theoretical properties of Algorithm 1 are based on analysing the concentration properties of the
plug-in estimator R(is) and the bootstrap statistics Rg/2(§§7b), which require several technical insights.
These are developed in Section 4. In light of the results presented therein, we are able to prove that our
bootstrap test is uniformly valid over expanding subsets of the null, and uniformly powerful over alternatives

separated from the null. To this end, let
’ﬁs(O) = {Pg € Ps: R(ES) = 0}.
For Ps € Ps and € > 0, define

B(Ps) = {Ps € Ps : max [[Zs — Yslla <€} and  Pg(0)™C = {Ps € Ps(0) : Be(Ps) € Ps(0)}.

Theorem 1. Suppose we observe Xg1,...,Xsng i Ps for each S € S independently, where each Pg
is v-subgaussian with mean ps. Denote by s the collection of population correlation matrices and by
Qs the collection of population covariance matrices, and assume that g =g clg for ¢ > 0. Let 02, :=

Jrreu[(rll] ﬁln(ﬂs)ﬂj and define

Kt |S| + log(|S|/)
= maxy/ ————" "
cot. Ses ng



(i) Then, for a universal constant K1 > 0 chosen sufficiently large, for all o € (0,1), if Co 2 < 1, we have

suap  Pp{pr<a}<a.
PgE'ﬁs(O)_CO‘vz

(ii) Moreover, if a € (0,1) and 8 € (0,1 —a) are such that B > 2(1—a)/a and Co.53 < 1/2, and if Ps € Ps
is such that R(Xg) > 26’075, then we have Pp, {pr > a} < 3, where

)

N 5
G — e [ 22 [108(05) tou(51/a8) (15 + Tou(Slns/a?)}
’ Ses oD, 32 ng

max —=——-
Ses o€ ns

K3/ {|S| +log([S|/oB)} log*(|SIns/aB) ; )

and Ko, K3 > 0 are sufficiently large universal constants.

First, observe that the initial part of the result implies asymptotic validity across the entire null hypoth-
esis, except at its boundary. Additionally, compared to the oracle test given in Theorem 7 in Section 4, the
separation required to achieve uniform power includes just an extra logarithmic term in ng and |S|, being
of the order

~ 1 log(|S
G s < max 1S 08ns 08(SI/a)
Ses ns

)

when ¢, 02, and v? are fixed. This, combined with Theorems 10 and 12, also demonstrates that our
bootstrap test is essentially minimax optimal up to logarithmic factors when S is either a d-cycle or a block
3-cycle.

Regarding the behaviour at the boundary of the null hypothesis, it is important to note that classical
bootstrap procedures can be inconsistent for certain parameter values on the boundary of the associated
parameter spaces (Andrews, 2000; Samworth, 2003; Cavaliere et al., 2017). While alternative approaches
like the m out of n bootstrap can restore consistency in these cases, they may still be outperformed by
the inconsistent standard bootstrap in practice. For example, this phenomenon is highlighted in Samworth
(2003) through an analysis of the parametric bootstrap in the context of the Hodges and Stein estimators.
As for the bootstrap test given in Algorithm 1, its asymptotic validity on the boundary crucially depends on
the geometrical properties of the null hypothesis, which are in turn induced by the structure of the collection
of missingness patterns S. While this is generally very complex, we can still demonstrate the asymptotic
validity of the bootstrap test over the entire null hypothesis in certain specific cases, such as for the d-cycle.

To this end, recall that for bivariate random vectors (X1,Y7),...,(Xn,Ys) M p with mean & n),
variances (02,72), and finite fourth moments, we have that /7 (p — p) < N(0,72(P)) (Lehmann, 1999,
Example 5.4.3), where p and p are Pearson correlation and its sample version, respectively. Here, the

definition of v*(P) is as follows: let (5);; = 0;; with

o1 = Var[(X =&Y —n)] = E[(X =&Y —n)® — p*o°7?],
g12 = 091 = Cov [(X = &)(Y —1),(X = £)*] = E[(X = &)*(Y —n) — po’7],
022 = Var(X —¢)* = BE(X —¢)* — o*,



o13 =031 = Cov [(X = &)(Y — 1), (Y =n)’] = E[(X =&)Y —n)*] — por?,
023 = 032 = Cov [(X = €)*, (Y = 0)?] = E[(X = )*(Y —n)*] —o?7%,
o33 = Var(Y —n)? = E(Y —n)* — 4. (2)

Let f(u,v,w) = u/y/vw, and define v2(P) = a’Sa, where a = (9f/0u, 8f /v, Of/0w) evaluated at

U= poT,v =02, w="T>

Proposition 2. Consider a d-cycle, i.e. S = {{1,2},{2,3},...,{d, 1}}, and write ¥s := (X{1,2},- - , fq,1})

for the collection of 2 x 2 correlation matrices with

1 cosf;
i = 7,
ot (cos 0; 1 >

where 0; € [0,7] for all j € [d]. Let Py 41y be the distribution of (X;, X;11) | @ = 1y j11y, and suppose
Pyji+1y has finite fourth moments for all j € [d]. Assume that min{1 + cos®;,1 —cos®;} > c for all j € [d]
for a universal constant ¢ € (0,1), and suppose there exists j € [d] such that v*(Pyjj41y) > 0. For all
Ps € Ps(0) and o < 1/2, we have

lim lim Pp, <al<a.
ng— 00 B—yoo B {pR - } -

Furthermore, if Ps € 0Ps(0) := Ps(0) \ UesoPs(0)~¢, the probability of rejection tends exactly to .

The condition v*(Pjj+1) > 0 ensures that R(Ss) and Rg/z(flg,b) do not have a degenerate limit, and
holds for all sufficiently regular distributions. For instance, in the case of elliptical distributions, we have
¥2(P) = (1+£)(1 = p?)? > 0 (see Theorem 5.1.6 in Muirhead (1982)), since p? < 1 by assumption, and the
kurtosis x is guaranteed to satisfy x > —1 (Bentler and Berkane, 1986).

3 Measure of incompatibility for covariance matrices

In this section we develop our index R(-) of the incompatibility of population covariance matrices, which
will be defined as the optimal value of a semi-definite programme. Standardising the covariance matrices
is necessary to have a well-posed problem, and we choose to work with correlation matrices because this is
most natural from a statistical point of view. Other standardisation are possible, though, each leading to a
different measure of incompatibility, with different properties. In Appendix B we introduce another measure
of incompatibility based on a different standardisation, analyse its properties, and derive an oracle test of
MCAR based on its estimation from data. In order to define and study the properties of R(-), we must first
introduce some basic algebraic objects for collections of symmetric and positive semi-definite matrices. Our

key notation is collected in Table 1 below.

Crucially, we say that an element of Pg is compatible if and only if it is an element of Pé) . Tt turns
out that we can characterise compatibility through the adjoint of the linear operator A defined in Table 1

above, which maps a symmetric matrix X into a collection of symmetric matrices indexed by S according to
(AX)s = (Xjj)j,jres for all S €S.



Notation | Definition Meaning
S A subset of the power set of [d] Set of all missingness patterns
S; {SeS:j¢€85} Set of all patterns that contain j
S;ijr {S€S:j,j €S} Set of all patterns that contain (7, j")
M=M,y | {X eR>: X = XT} Space of symmetric matrices
Ms {(Xs:5€8): Xs € Mg for all S €S} Space of collections of symmetric matrices
(X,Y) tr(XY) for X, Y e M Frobenius inner product
(Xs,Ys)s | Dogestr(XsYs) for Xs,Ys € Mg Sum of Frobenius inner products
P* {EeM:2>=0} Cone of PSD matrices
P {Z e P*: diag(Z) = 14} Set of correlation matrices
Ys s 0 s =s 0if and only if ¥g =0 for all S €S Loewner order for collections of matrices
Ps {Es € Mg : Xg =5 0} Set of collections of PSD matrices
Ps {¥s € Pg : diag(Xs) = I|g for all S € S} Set of collections of correlation matrices
A A: M — Mg with (AX)s = (X,j/)j.ies Marginalisation operator on matrices
Pé) o {4 : ¥ e P*} Set of compatible collections of PSD matrices
P {AX: X e P} Set of compatible collections of correlation
matrices
y {diag(v) : v € R? and E?Zl v; =0} Space of diagonal matrices with null trace
Os (O5): 5 €8) Collection of zero matrices
Is (Iis): S €8) Collection of identity matrices

Table 1: Table of definitions commonly used in the main text.

Proposition 3. The adjoint operator A* : Mg — M of A is given by

(A"Xg)j5 = > Vg esy(Xs)jy = Y (Xs)jj,
Ses SES;

where we recall that S;;y ={S €S:4,7 € S} =S, NS;.

Now, the following proposition fully characterises compatibility in terms of the non-negativity of a col-

lection of linear functionals.

Proposition 4. For X5 € P§ we have Xs € ’Pé)’* if and only if
(Xs,Xs)s >0 for all Xs € Mg satisfying A* Xs = 0.

The proof can be found in Section 7. This is an extension of well-known characterisation of the feasibility
of positive semi-definite matrix completion (e.g. Laurent, 2009). Indeed, when g is consistent, we can show
that (Xs, Xg)s = (A*Xs, ), where ¥ is the d X d symmetric matrix with ¥,;; = (Xg);; for all § € S;j/, if
S;jj» # 0, and Xj;; = 0if S;;» = 0. Here ¥ can be thought of as a partial matrix that is padded with zeros
in unobserved positions. Since A*Xg is also zero in these positions, the value of X there is arbitrary. Now
our characterisation reduces to checking that (A*Xg,¥) > 0 for all Xg € Mg satisfying A*Xg = 0, which
is equivalent to checking (X,%) > 0 for all X € M with X;;; = 0if S;;; = (), which coincides with (4) in
Laurent (2009).
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Proposition 4 provides a characterisation of compatibility, but in order to assess the significance of depar-
tures from the null hypothesis and thus to define hypothesis tests, we will need a numerical measure of incom-
patibility. A natural way to do this is to minimise (Xg, Xig)s over a subset of {Xs € Mg : A* X5 = 0} that still
characterises compatibility, but gives finite minimal values. First, observe that checking the compatibility of
covariance matrices is equivalent to checking the consistency of the variances 0% = diag(Cov(Xs|Q = 1g))
for S € S, and the compatibility of the correlation matrices Corr(Xg|Q2 = 1g) for S € S. Here, we will focus
on the latter issue, and postpone the discussion of testing the consistency of variances to Section 6. This is
because this problem essentially reduces to testing the equality of variances, which is well understood in the
statistical literature (Brown and Forsythe, 1974; Gastwirth et al., 2009). Now, whenever g is a collection

of correlation matrices we define

1
R(ES) = sup{ — a<ES,XS>S : Xs + Xé) =s0,A*Xs+Y =0 for some Y € y}
1
=1- g 1nf{<25,}/§>5 1 Ys =g O,A*}/S +Y > I, for some Y € y} (3)

where X0 = (X2 : S € S) with XJ = diag(1/[S;|:j € S), and where Y is the set of diagonal d x d
matrices with trace equal to zero. We refer to R(-) as an index of incompatibility, borrowing the terminology
from Berrett and Samworth (2023). The objective function of this optimisation problem is a one-to-one
mapping of the linear functional appearing in our characterisation of compatibility. Moreover, by choosing
Y = O and noting that X2 =g 0, we can see that for any Xs that satisfies A*Xg = 0, the collection
eXs is feasible for € > 0 sufficiently small. Thus, by Proposition 4 we have that R(Xs) > 0 whenever
Ys is incompatible. On the other hand, when X5 = AX is compatible and (Xs,Y) is feasible we have
(3s, Xs)s = (5, A4*Xs) = (5, A*Xs +Y) > 0, where the second equality holds because ¥ has a constant
diagonal. Combining this with the observation that Xg = Oy is feasible, we see that R(3s) = 0 when Xg is
compatible.

In the above argument we did not use the specific form of the lower bound Xg =5 — X2 anywhere, and
it would also have been possible to optimise over the restricted set of Xg that are feasible with Y = O. The
specific choice of the feasible set in the definition of R(Xs) was made because it leads to an interpretable
dual formulation. While there exist semi-definite programs for which strong duality does not hold, Slater’s
condition is satisfied in our problem, so we do not encounter such issues (see Appendix C for an introduction

to the theory of semi-definite programming). This is formalised in the result below.

Proposition 5. For ¥s € Ps we have

R(Xs) =inf{e € [0,1] : 5 € (1 — €)PY + €Ps}

1
=1- gsup{tr(E) CAY 25 Xs, B =... =244, & = 0}, (4)

This result shows that our measure of incompatibility R(3s) can be interpreted as the smallest amount
of perturbation € that a compatible collection of correlation matrices must be corrupted by to result in the
input collection 3g. It is immediate from this representation that R(Xg) takes values in [0,1]. Moreover,

it follows from Slater’s condition that the optimal value of the dual problem is attained. Thus, writing
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A" =1— R(Xg), we can write Xg as
Ys = AAZ + (1 - X*)Xg, (5)

where ¥ € P and ¥f € Ps. By the maximality of A\* = 1 — R(Xs), it must be the case that R(Xg) = 1.
Indeed, if this were not the case, it would be possible to write £ = N AYX' + (1 — X )Xg for some A € (0, 1],
which would contradict the fact that A* is optimal. This argument shows that, whenever S is such that there
exists an incompatible collection g, the maximal value R(Xs) = 1 is attainable, so that the quantity R(Xs)
is on an interpretable scale between compatibility at one extreme and maximal incompatibility at the other.

We remark that this dual interpretation of R(-) aligns with a similar representation of the incompatiblity
of collections of distributions defined by Berrett and Samworth (2023). In this earlier work it is shown that the
incompatibility of collections of distributions can be understood through linear programming techniques. Our
work here, however, shows that we must consider the more complex problem of semi-definite programming to
understand the incompatibility of collections of covariance matrices. Despite this additional complexity, since
Slater’s condition is satisfied for our problem, the primal-dual interior point method has a computational
complexity which is polynomial in the number of constraints and the dimension of the variable square matrix
(Section 6.4.1. of Nesterov and Nemirovskii (1994), Section 5.7. of Vandenberghe and Boyd (1996)). This
ensures that R(Xgs) can be always computed efficiently without additional assumptions.

We conclude this section with some basic properties of R(-) that will be used in later proofs.
Proposition 6. The following hold:
(i) R(-) is convex.
(i) R(-) is continuous.

(ii1) Suppose S C' S’ and Xg Cg Xg/, where the inclusion Cg means that every correlation matriz in Xg is
also in Xg. Then R(Xs) < R(Zg).

It is interesting to observe that property (iii) says that R is monotone with respect to the inclusion

operator, so that additional information can only make a collection less compatible.

4 Concentration bound and an oracle test

Having introduced our population-level measure of incompatibility, in this section we analyse the concen-
tration properties of the plug-in estimator R(ig) This will give us tools that enable us to prove theoretical
guarantees (Theorem 1) for the bootstrap procedures defined in Section 2. Furthermore, it will lead natu-
rally to the definition of the oracle test defined in Theorem 7. Now, the analysis of R(EA]S) is challenging,
as it is defined as the optimal value of a semi-definite program with an unbounded feasible set. In fact,
without further assumptions, it is not possible to restrict attention to a compact feasible set. On the other
hand, most statistical techniques for the analysis of suprema of empirical processes require feasible sets to
be totally bounded so that, for example, covering arguments can be applied.

Fortunately, under the assumption that g >g 0, our dual problem (4) is strictly feasible and hence

Slater’s condition implies that the optimal value is attained in the primal problem (3). This assumption is
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reasonable in many areas of application, and similar assumptions of invertibility have been used frequently
in the literature (Meinshausen and Biithlmann, 2006; Cai et al., 2011). In fact, if we assume the stronger
condition that X5 >g cls for some ¢ > 0, we will see that the optimal value is always attained in a compact
set whose size depends on c¢. Indeed, the strict feasibility of the dual problem (4) implies that there exists
Xs € Ms such that X5+ X2 =5 0 and R(Xs) = —d~'(Xs, ¥s)s. This in turn implies that

1 d
D IIXs + X5l = (Xs + X, Is)s < —(Xs + X8, Ts)s = —{1 = R(Ts)} <
Ses

ol

)

so that we have a bound on the sum of the nuclear norms of the matrices in the sequence Xg + Xg . In

finding the optimal value of the primal problem (3), then, we may restrict attention to

F, = {Xg €Ms: Xs+ X0 =50, || Xs + X8|l <d/e, A" Xs+Y = 0 for some Y € y}, (6)
Ses

which is compact. Formally, defining the regularised version of R(-) as
R.(Xs) := sup {—d71<X§, Ys)s: Xg € ]-"Z} for z <1, (7)

we have just shown that R.(Xs) = R(Xs) whenever ¥g g cIs. This regularised index of incompatibility is
used to compute the bootstrap statistic RE/Q(E\:SJ) in Algorithm 1, and is such that R,, (Xs) > R,,(Xs) if
29 > 21.

Before moving on to describe how to construct a statistical test under this new assumption, we give a

brief discussion of the norm on Mg defined by

1 Xslles =Y [ X5l

ses

which reduces to ) 4.5 tr(Xs) in case that Xs =5 0. For each S € S, the nuclear norm || Xs||. can be thought
of as the ¢; norm applied to the eigenvalues of Xg. As these are then summed to give || Xs||.,s, we see that
I - |l+s can be thought of as an ¢; norm on Ms. It is easy to see that the dual norm of || - || s with respect
to the inner product (-,-)s is

X = X
I Xsllos o= max [ X,

where || - ||2 is the usual spectral norm of a matrix. This follows after writing the sequence of matrices in
block-diagonal form, and allows us to derive the following generalisation of Holder’s inequality in the space

of matrix collections,

(X5, Ya)s| < [ Xsllesl¥sllzs = D Vsl ~max | Xs|la. (8)
Ses

This inequality will be used in the proof of the following result, which provides valid critical values for the

test statistic R(ig) and gives conditions under which the resulting test has large power.

Theorem 7. Suppose that the assumptions of Theorem 1 hold, and recall the definition of Co. = Cq
from (1). Then, for a universal constants K1 > 0 chosen sufficiently large, for all a € (0,1), the test that
rejects Hy : R(Xs) = 0 if and only if R(ZA]S) > Cy, has Type I error bounded by . Moreover, for § € (0,1—a),
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if R(Ss) > Cy + Cg, then P{R(3s) < C,} < 8.

In proving this result we give concentration inequalities for the random quantities R(EA]S) The analysis
of R(Ss) is crucially based on the fact that, under Hy and in light of the inequality (8), we can control the
oscillation |R(Ss) — R(Ss)| using maxges || — Sgll2, where the Xg are the Pearson population correlation
matrices and is are the corresponding Pearson sample correlation matrices. To this end, we derive a tail
bound for the spectral norm || — %||», where ¥ is the population correlation matrix and & is the sample
correlation matrix of complete data, which may be of independent interest. This can be found in Section 7.

As well as providing a critical value for our test, Theorem 7 also gives upper bounds on the minimax
2

separation rate for this testing problem. When ¢ > 0, o;, and v > 0 are fixed, our analysis gives an upper

bound on the minimax rate of the order

S [T 125)
SeS ns

whenever ng 2 |S] for all S € S. This is our main regime of interest, and we see in our examples in Section 5
below that reliable testing is only possible when sample sizes are large compared with dimensions, up to
logarithmic factors.

We conclude this section by illustrating the behaviour of this bound in certain examples where the
expression for C, can be simplified. The corresponding upper bounds on the minimax separation rate will

be complemented by lower bounds in Section 5 to follow.

Example 1. In the d-cycle example, with d > 3 and S = {{1,2},{2,3},...,{d — 1,d},{d,1}}, we have
|S| =2 for all S €S and |S| = d so that

Co < max \/ log(d/) _|log(d/a)

Ses ng minng
SeS

Combined with Theorem 10 below, this reveals that, in this specific example, testing the compatibility of the

correlation matrices is no harder than testing the consistency of the variances, up to constant factors.

Example 2. Consider the block-3-cycle S = {[2d], [d] U ([3d] \ [2d]), [3d] \ [d]}, with d > 1. Then

ng minng
Ses

Cag%lag\/d—klog(l/a) | d+10g(1/a)
S

We prove the minimazx optimality, up to logarithmic factors, of this rate in Theorem 12. In particular, this
shows that the optimal separation rates for this testing problem are not significantly faster than the optimal

rates for the estimation of Xg with operator norm loss.

Example 3. Consider S = Pow([d]), where Pow(-) stands for the power set. This corresponds to the case

where we observe all possible missingness patterns from a dataset of dimension d. In this case, we have
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maxges |S| = d and log |S| = dlog2, so that

C, S max

\/d +log(1/a) _ | d+log(l/a)

n minn
o Ses S

This shows that C,, is at worse of the order \/d/n.

5 Optimality and examples

In this section, we assess the optimality of the oracle test given in Theorem 7, in the settings of Examples 1
and 2, i.e. when S = {{1,2},{2,3},...,{d — 1,d},{d,1}}, the d-cycle, and when S = {[2d],[d] U ([3d] \
[2d)), [3d] \ [d]}, the block 3-cycle. These collections S provide examples where our methodology is provably
near rate-optimal. For a given dimension d, these two examples further demonstrate the range of optimal
rates that can arise for different collections S. Assuming for simplicity that ng = n for all S € S, we will
see that the optimal rate in the d-cycle case is {log(d)/n}'/2, while for the block 3-cycle it is (d/n)*/? up to
logarithmic factors. Together, these results show that the structure of S can have a significant effect on the
difficulty of the problem.

We will characterise the optimality of a testing procedure using the minimax framework, where we aim
at finding the smallest separation between the null and the alternative hypotheses such that there exists a
test that can distinguish between Hy and H; up to a given level of error. More precisely, given p > 0, we
are interested in testing

Ho:R(Xs)=0 vs. Hp:R(XZs)>p,

and our goal is to find the smallest value of p such that there exists a test with uniform error control. Write
U = PUs(ng) for the set of all tests, that is measurable functions of the data (Xg, : S € S, € [ng]) taking
values in {0,1}. Recall that Pg(0) denotes the set of all collections of distributions on (R® : S € S) such
that the associated correlation matrices satisfy R(Xs) = 0, and write Ps(p) for the set of all collections of
distributions on (R® : S € S) such that the associated correlation matrices satisfy R(Xs) > p. Given a
collection of distributions Ps = (Ps : .S € S) on (R¥: S € S) and a collection of sample sizes ng = (ng : S €
S), we write P for the distribution of the entire dataset (Xg; : S € S, € [ng]) when each observation
is independent and Xg; ~ Pg for each i € [ng] and S € S. For a fixed n € (0,1) we may then define the

minimax separation to be

p" =ps(ng,n) :=1inf < p>0: inf ( sup PSP (p=1)+ sup PI(p= O)) <ny.
PEYN\P; 0ePs(0) Ps1€Ps(p)

In our analysis we take n = 3/4, but this is an arbitrary choice and any constant value in (0,1) would
result in the same qualitative behaviour. In common with previous work on minimax testing, we prove lower
bounds on p* by constructing suitable (prior) distributions s, 11 whose support is contained in Ps(0), Ps(p),
respectively. In our proofs it will be sufficient to consider mean-zero Gaussian distributions with suitable

priors over their covariance matrices. Having chosen these priors we can bound the minimal error probability
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by writing

sup ng‘s(go =1)4+ sup PS(%TS(QD =0) > E#DPS%LS(cp =1)+ EMPS{Lg(Lp =0)
Ps,0€Ps(0) Ps 1€Ps(p)

>1- Tv(EuoP§?€S7Eu1P§{LS)’

where E,, PS@?ZLS denotes the mixture distribution of the dataset resulting from generating Fs; ~ p; then,
conditionally on Fs;, generating the data. Then, the idea behind this method of finding a lower bound on
p*

Rng Rng
between E,,, Fgo® and E,,, Pgy™.

is to find priors pg, 1 with the largest separation possible such that no test can successfully distinguish

5.1 Cycles

Recall that we refer to S as a d-cycle when S = S, := {{1,2},...,{d,1}}. In this subsection, additions in
subscripts of the form (4,5 + 1) for j € [d] are intended modulo d, where d in the size of the cycle, so that
(0,1) and (d, d+1) are equivalent to (d,1). We also write s, := (X129}, -+, Xq,1}) for a collection of 2 x 2

correlation matrices with
1 cosf;
Y1 = 7,
ot (cos 0; 1 )
and 0; € [0, x| for all j € [d].

Now, recall that Theorem 7 implies an upper bound on the minimax separation of the form p* < \/m.
While it is straightforward to show a lower bound of p* > 1/4/n using a standard Le Cam two-point argument,
matching the logarithmic dependence on d in the numerator is technically challenging. Nonetheless, we will
argue that \/m is the optimal rate of convergence in the combined problem where we test both the
compatibility of the correlation matrices and the consistency of the variances.

To this end, we now define an analogous index of inconsistency for the collection of variances. Writing

02 = (0% : S €S) for the collection of individual variances, we fix our units of measurement such that

av;(od) =18;17" Y od; =1,
SESj

for all j € [d], where 0'2’ ; is the j-th element of o%. This is a natural constraint, analogous to the standardi-
sation of variables in complete-data problems, that does not remove information that may be present in the

individual variances. For such O’é, define
V(0g) :=1— min minog, = 1-0%,).
(o) =1 = muin min 0 = e (1 = 05,)
Under the hypothesis av;(o3) = 1 for all j € [d], it is clear that V(¢3) = 0 if and only if 0% ; = 1 for all
j €[d], S €S;. On the other hand, we have V(c2) > 0, if and only if there exists at least one variance
strictly less than 1. It is clear from the definition that V is bounded by one, and that this extreme value is

attainable when § is non-trivial and there exists j such Jg ; = 0 for some S € S;. The following result gives

a dual representation for V(02), providing justification for our specific measure of inconsistency.
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Proposition 8. If av;(02) =1 for all j € [d], then
V(o) = inf {e €0,1]:08=(1—e)Ayly+ ea’g with av (o) =1 for all j € [d]} ,

where (Ayo?)s = (O’%)kes.

This result gives a dual representation for V(U§)7 which is analogous to Proposition 5 and leads to a similar
interpretation, based on the idea of finding the smallest perturbation to make the collection consistent.
We now characterise the optimal rate of convergence in the combined problem where we test both the
compatibility of the correlation matrices and the consistency of the variances. Together, the following results
show that the oracle test based on the plug-in estimator R(Sg) + V(52) is optimal up to constant factors,
and further imply that testing the consistency of the variances captures the essential statistical difficulty of

the problem in the case of a d-cycle.

Theorem 9. Suppose that the assumptions of Theorem 1 hold, and further assume that the sequence of
variances o satisfies av;(c2) = 1 for all j € [d]. Define cY) = maX{ZC’a/Q,C((XV)}, with Co = Cqc as
in (1) and

O _ 1o wcg (Sses S1/2)

minges ng

for a universal constant Ky > 0. Then, for Ki,Ks > 0 chosen sufficiently large, for all o € (0,1), if
cfFY) < min{2, 1602}, the test that rejects Hy : R(3s) + V(02) = 0 if and only if R(Ss) + V(c?) >
CEY) has Type I error bounded by «. Moreover, for all 8 € (0,1 — «), if C’éRJrV) < min{2, 1602} and
R(3s) + V(02) > O 1 O then P{R(Ss) + V(53) < ¢V} < .

Theorem 10. Let S =Sy for d > 3, with sample sizes ng = (n1,...,nq4), and consider testing
H):R(Xs)+V(e3)=0 ws. Hj:R(Zs)+V(?) > p,

for p > 0. Call pLy the minimax separation of this testing problem. There exists a universal constant
c1 > 0 such that

. log d
PRyvV = C1

minjerg 1
Furthermore, we can give a relatively explicit expression for R(-) for a general d-cycle.

Proposition 11. Let ¥ be the optimum solution to the dual problem (4), and let p* = (¢7,...,¢%) be such
that Xj j11 = cos ¢} for each j € [d]. Then:

(i) R(Zs,) = lpj — (1 = R(3s,)) cos |, for all j € [d];
(i) @* = (@5, ..., %) is unique, and @*(01,...,04) is continuous for varying (61, ...,04) € [0,7]¢;
(iii) if 01 = max;c(q) 05, with Oa,...,04 < 7/2, then

1— ¢ cosf;
1- R(Ss,) = — B0 for all j € [d),

1 —¢€;cos ©;
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where €4 = (€1,...,€64) = (—1,+14-1). Also, ¢ = Z?:z ©;

Observe that part (ii) only says that the entries of 3 corresponding to the cycle pattern are unique,
not the whole ¥ itself. Indeed, given the unique optimal ¢*, there may exist infinitely many positive semi-
definite completions. In fact, if A is a partial symmetric matrix admitting a positive semi-definite completion,
then there exists a unique positive semi-definite completion with maximum determinant (Grone et al., 1984,
Theorem 2). For a general sequence of angles (61,...,0y), it is sufficient to use the transformation given in
Proposition 19 in Appendix A to reduce to the case where at most one angle is larger than 7/2, choose €4
as outlined above, and perform the inverse transformation to obtain the signs for the original (01,...,04).

As an immediate corollary of this, it is easy to see that, under the same set of hypotheses, we have

1+ cos 0y
b R = T st
1

where 7 is the solution of
* d *
Y1 = Zj:Q ©j

1—cosf;

cospi =1— g (L+cosepy), forall je{2,... d}

For further properties of R(-) in the case of a d-cycle, we refer the reader to Appendix A.

5.2 Block cycles

So far, we have studied with particular care the case of a d-cycle, which is a relatively simple high-dimensional
setting, since it is a collection of d two-dimensional distributions. We now describe an evolution of this setting,
where we consider a block-matrix version of the 3-cycle. In this case the number of variables per missingness
pattern is large and we will see that the minimax separation rates are correspondingly much larger than in

the d-cycle, though the number of variables is of the same order.

Theorem 12. Let S = {[2d], [d] U ([3d] \ [2d]), [3d] \ [d]} for some d > 1. Writing ns = (n1,n2,ng) for the

sample sizes within each pattern, there exists a universal constant ¢y > 0 such that

d
s ¢
p= 1\/(711/\ng)log4(ed)

whenever ny Ang > d/2.

This result shows that, up to logarithmic factors in d, the minimax separation rates for this testing
problem are the same as the minimax estimation rates for estimating g in the operator norm distance. This
is related to the fact that R(Xs) is a non-smooth functional of ¥s. Indeed, the following result shows that
we can construct examples of Xg such that R(Xs) can be bounded below using the function z — max(0, z);

see below for more discussion of the relevant literature.
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Proposition 13. Consider the set of patterns S = {[2d], [d] U ([3d] \ [2d]), [3d] \ [d]} for some d > 1, and

suppose that
I, P I, -pP\ (I, BI,
ZS = ) ) ’
pr o) \-pt 1, )\, 1L
for some P € R¥™4 such that |P|la < 1 and some B € [0,1]. Then:

(i) R(Zs) =0 if and only if ||P|3 < 152,

(i) R(Ss) > & ?:l(a?(P) - %)_5_, where o;(P) is the j-th singular value of P.

This shows that, for Xg of the form above, we can relate our testing problem to the problem of testing
whether the vector of squared singular values of P belongs to the orthant (—oo, (1 — 3)/2]¢, or is separated
from it in the ¢; distance. In a Gaussian location model a similar problem, measuring separation with the
{5 distance, was considered by Blanchard et al. (2018), and part of our lower bound construction is inspired
by this work. However, the consideration of singular values of matrices rather than Gaussian means means
that new technical tools are required. In this regard, the techniques of Thépaut and Verzelen (2024), who
consider the estimation of quantities of the form ijl 0j(P)? for ¢ > 0, are useful. We also mention that
such problem are related to the estimation of ¢; distances, for which good references include Cai and Low
(2011) and Jiao et al. (2016).

6 Simulations

In this section, we empirically validate the performance of the bootstrap test described in Algorithm 1. To
also detect departures from the null hypothesis caused by inconsistencies in either the means or variances, we
introduce two separate bootstrap procedures addressing these aspects individually. Specifically, Algorithm
2, which provides the p-value pys, is designed to detect inconsistencies in the collection of means ug, while
Algorithm 3 returns the p-value py, focusing on inconsistencies in the variances ag. To create a more
comprehensive test, we propose an omnibus procedure that combines these three p-values using a Bonferroni
correction, which consists in rejecting the null whenever min{pg,pv,pnm} < «/3. Although alternative
methods for combining p-values, such as Fisher’s method (Mosteller and Fisher, 1948), could be considered,
we chose this approach for its simplicity and its better control of the Type-I error. Furthermore, there
are various alternative approaches for measuring inconsistency in means and variances, but we chose these
because they align with the spirit of Algorithm 1. Additionally, this is a relatively classical problem since
it reduces to testing the equality of means and variances. Consequently, alternative methods might achieve
better practical performance. However, this is beyond the scope of our work, as the real novelty lies in
addressing the more challenging problem of testing the compatibility of correlation matrices.

Will will compare Algorithm 1 (represented by the purple line in the plots) and the omnibus approach
(represented by the blue line in the plots) with Little’s test (Little, 1988). Little’s test can be applied when
all pairs of variables are observed together, so that the EM algorithm (Dempster et al., 1977) can be applied
to find estimators ji and A of the mean and covariance matrix of the data under the null hypothesis of

MCAR. Little’s test is a generalised likelihood ratio test whose validity is based on the assumption that the
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data (Xg,;:S €8S,i € [ng]) are Gaussian. Define

dy =Y ns(Xs — ijs) A (Xs — figs),
Ses

@20 = 3 nsltr(@sR ) - || — log [Os] + log A5,
Ses
and

2 _ 2 2
& =d+d

aug cov*

Then, under MCAR, diug converges in law to a x2-distribution with

7= 518111 +3) ~ sd(d+3),

SeS

degrees of freedom by Wilks’ theorem. Based on these asymptotic results, Little’s test rejects MCAR if and
only if d2,, > Xfc(l —a), where X?(l —a) is such that P{W > Xfc(l —a)} = @, and where W is y?-distributed

with f degrees of freedom. Using similar asymptotics, one can define a test based on d?

cov)

which ignores the
means and only considers the partial covariance matrices, and another one based only on di, which discards
the collection of covariance matrices and makes use of the means only. For the test based on di we will
use the R-function mcar_test from the R-package naniar (Tierney and Cook, 2023), while the other two
tests based on dZ,, and dZ2,, can be found in the R-package MCARtest (Berrett et al., 2022) under the name
little_test. In the following subsections, we will compare our procedures with Little’s test based on di
(represented by the green line in the plots) and diug (represented by the black line in the plots). We will also
include a combined approach (represented by the orange line in the plots), which checks the compatibility
of the covariance matrices using min{pg, py } but checks the consistency of the means using di instead of
Algorithm 2. The p-values are again combined using a Bonferroni correction. Section 6.1 is focused on the
case where S is a d-cycle, which is the best-studied theoretical setting we considered in the paper, while

Section 6.2 is closer to real-world data applications.

Algorithm 2 Means only: MCAR bootstrap test checking consistency of means
Given data Xg, discard all patterns S € S such that ng < 10.
Compute fis = SampleMean Xg, i.e. fig; = ngl ZiEns Xg,ij forall SeSand jes.
Compute M (fis) = maxses ||fis — Hjs|l1/ maxses |S], where (7@); = fi; = S| Yges, Hs.j-
Rotate the original data Xg, i.e. for all S € S, for all i € [ns] do Xs; = X5 — [is + [i|s-
for b € [B] do

For all S € S, let X’éb) = (X’éb) .1 € [ng]) be a nonparametric bootstrap sample from Xg.

5T

Compute fis, = SampleMean Xéb) and M (fis ).
end for
return py; == (1+ B) " (1 4+ X0, I{M(fis) > M(fis)})-
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Algorithm 3 Variance only: MCAR bootstrap test checking consistency of variances

1: Given data Xg, discard all patterns S € S such that ng < 10.

2: Compute 52 = SampleVar Xg, i.e. Eg,j = ngl Y icns Xg,ij — ﬁ%] forall S € Sand j€S.

3: Rescale the data such that [S;|~! ZSesj 3%,]‘ =1 for all j € [d].

4: Compute V(63) = 1 — minges minjeg ’a\%’j.

5: Rotate the original data Xg, i.e. for all S € S, for all i € [ns] do Xg,; = diag(G5")Xs.:-

6: for b € [B] do

7: For all S €S, let Xéb) = (Xébz .1 € [ng]) be a nonparametric bootstrap sample from Xg.

8: Compute 85717 = SampleVar Xg , and rescale the data such that |S;|~! ZSeSj 3%71),3‘ =1 for all j € [d].
9: Compute V(53 ,).

10: end for

—
—

: return py = (1+ B)~1(1 + Zszl 1V (58,) > V(a3)}).

6.1 Correlation matrices and simulations for d-cycles

We compare Algorithm 1 with Little’s procedures in the settings given in Theorem 10, namely in the case

of a d-cycle. For our first settings, we set ng = (ns)ses = (200,...,200), and simulate X; i 1y, R
N(02,Xy; j4+1y) for i € [200] and j € [d], where
1 cos 01 1 cos 0y
Ys, = e ,
cos 0 1 cos 6y 1
for certain values of 61,...,04 € [0, 7]. This makes sense only for d = 3, while for d > 4 there exists at least

one pair of variables that are never observed together, making the EM algorithm to estimate A inapplicable.
As for the case d = 3, in Figure 2 we set B = 99 and o = 0.05, and we vary 61 € [0z + 05, (02 + 05 + 7)/2],
with (02,03) equal to (7/3,7/6). We repeat the experiment H = 500 times, and report the average decision.

The simulation results depicted in Figure 2 show that for d = 3, both the omnibus and combined

2
aug’

procedures perform similarly to Little’s test based on d though the Type I error of Little’s test is slightly
inflated. This outcome supports a conjecture in Little (1988), where it is suggested that even under normality,
the asymptotic null distribution of dfmg is unlikely to be reliable unless the sample size is large. Notably,
Algorithm 1 demonstrates the highest power, which is not surprising since it is specifically designed to detect
incompatible correlation matrices. As expected, the test based on di shows no power, as it is only sensitive
to inconsistencies in the means, which are consistent in this particular scenario. For higher dimensions
(d > 4), Little’s test cannot be applied, while our test remains valid since it has no constraints on S. In
Figure 4, we show the power function of our bootstrap tests in the case of a d-cycle, with d € {100,200},
with 0 = ... =0 = ﬁ, and varying 67 in [r/2,57/8]. We repeat the procedure H = 100 times, and
report the average decision as an estimate of the power function.

Our simulations so far have used Gaussian data, so that Little’s test is valid. We now repeat our
simulations with a heavy-tailed data distribution in order to assess the robustness of the methods. To this end,
we consider again a 3-cycle, and generate Xy; i1} K log N(02,%y; j413) for all 4 € [200], 5 € [3], where
log N (02, ¢, j113) stands for the log-normal distribution, meaning that if Y ~ log N (02, ¥, j+13) then ¥; =
e, with Z ~ N(02,%y; j+13). Here we vary 6, € [7/2 + 7/12,7/12], with (62,03) = (37/4,7/4). Figure 3
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where we vary 61 € [02 + 0s,(02 + 03 + 7)/2], with
(02,03) = (w/3,7/6). We repeat the experiment H = 500
times, and report the average decision. The nominal level
a = 0.05 in red, B = 99.
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Figure 3: 3-cycle with lognormal data. We generate
Xty = log N(02,%¢;.5413) for all i € [200], 5 € [3],
where we vary 61 € [n/2 4+ w/12,7/12], while fixing
(02,03) = (3w/4,7/4). We use again H = 500, B = 99
and a = 0.05. R(Xs) is estimated using an independent
sample.

shows the analogue of Figure 2, in the case of artificial data from a multivariate log-normal distribution
rather than a Gaussian distribution. Note however that the covariance matrices do not coincide with the
original ¥; j 113, hence on the z-axis we decided to estimate R(Xs) using R(Ss) using an independent sample
from the same log-normal distribution. As in our previous results, Little’s test based on di exhibits no power

but maintains Type-I error control, even when we deviate from the Gaussian setting, which aligns with a

2
aug

conjecture made in Little (1988). In contrast, Little’s test based on d3 , fails to control the Type-I error. On
the other hand, our three tests exhibit similar behavior to that in the Gaussian setting, with only a slight

decrease in power.

6.2 Omnibus approach

In this subsection we compare the omnibus and the combined approaches with Little’s tests in settings which
are closer to real-data applications. In this regard, we generate complete artificial data according to various
distributions, and then delete entries using the R package missMethods (Rockel, 2020). MCAR data are
generated with the function delete MCAR, where each entry of the data matrix is deleted independently of
the others with probability p € (0,1). Deviations from the null are generated by partitioning the columns in
two groups, group A where the missing values are generated, and group B which determines the missingness
mechanism, with two different mechanisms being considered. First, delete MAR_1_to_x sets threshold values,
splits the rows into two further groups depending on whether columns in group B have values greater or

smaller than the threshold, and deletes some entries in columns in group A in a such a way that the probability
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Figure 4: Simulation of the power functions of our method with B = 99(blue) for d = 100 (left), and d = 200 (right),
with Gaussian data. In each example, we fix 62 = ... = 04 = 57—y, and vary 601 in [7/2,57/8]. For each of this
setting, we repeat the experiment H = 100 times, and report the average decision. The nominal level o = 0.05 in
red.

for a value to be missing in group A divided by the probability for a value to be missing in group B equals 1
divided by x, with x to be specified as an input parameter. Second, delete MAR _rank deletes each entry in
a column of group A with probability proportional to the rank of the same row in the corresponding column
of group B. For further details on these functions, and other methods to generate MCAR, MAR, MNAR
data, refer to Santos et al. (2019). These three functions were also chosen in the numerical analysis of a
test of MCAR based on U-statistics in Aleksi¢ (2024). Before discussing the simulation results, we note that
in these settings, under the alternative, the collection of correlation matrices is only mildly incompatible
(as verified by numerical inspection), while the inconsistency in means plays a critical role in detecting
departures from MCAR. Consequently, the test based on pr demonstrates low power, unlike our omnibus
approach and Little’s test based on di.

For Figures 5, 6, 7, we generated 3-dimensional datasets of sample size n = 200 distributed according
to a Clayton copula, with parameter 1 and Gaussian (N(0,1)) margins, using the function mvdc from the
R-package copula Hofert et al. (2020). For Figure 5 we deleted the first two variables with delete MCAR(p)
for different values of p € {0.05,...,0.40}, in order to get an artificial setting coming from the null. For
each p, we repeat the simulation H = 500 times, and report the average Type-I error. Alternatives to the
null were generated using delete MAR_1_to_x, with z = 9, for Figure 6, and delete MAR_rank for Figure 7.
Again, for each p, we repeat the simulations 500 times, and report the average power. In this setting, Figures
6 and 7 demonstrate that all tests, apart from the one based on pg, perform similarly in terms of power. The
behaviour of the test based on pr can be attributed to the fact that, under the alternative, the collection of
correlation matrices is only mildly incompatible, with numerical inspection suggesting that incompatibility

decreases as p increases. Meanwhile, Figure 5 seems to indicate that all tests control the Type-I error at
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aug- Lhis outcome supports once more the

the nominal level «, except possibly for Little’s test based on d
conjecture in Little (1988) where it is suggested that even under normality, the asymptotic null distribution
of dfmg is unlikely to be reliable unless the sample size is large. We then move beyond the Gaussian setting
and explore different marginal distributions. Specifically, we consider exponential distributions (Exp(1)) in
Figures 8, 9, 10, with d = 3, and log-normal distributions (log N(0,1)) in Figures 11, 12, 13, with d = 5.
In the setting of log-normal data, Figures 9, 10 show a slight loss in power for our omnibus and combined

approaches. However, this is offset by their better control of the Type-I error (Figure 8) compared to Little’s

2

aug» Which consistently fails to recognize the null and always rejects. The

test based on di, and especially d
results for the exponential setting fall between those of the Gaussian and log-normal settings.

Overall, these simulations demonstrate the effectiveness of our procedures. The combined approach
could serve as a valid extension of Little’s test based on di when both means and covariance matrices are
taken into account, rather than just means. Interestingly, incorporating di with Algorithms 1 and 3 does
not inflate the Type-I error, which is a significant limitation of Little’s test based on d2,,. On the other
hand, while the omnibus approach exhibits slightly weaker performance in terms of power, it provides more
rigorous control of the Type-I error. Additionally, it offers two further advantages compared to the combined
approach: (i) it can be applied to any missingness pattern S, even when not all pairs of variables are observed
simultaneously; and (ii) it remains effective even when the dimensionality d is large, as it does not depend
on the EM algorithm, which is known to encounter issues in practice when d > 50 (see the documentation

of the R function na.test in Yanagida (2024)).
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7 Proofs

7.1 Proof for Section 2

Proof of Theorem 1. We start by proving (i). Let Ps € 75S_C“’2(0). Then
Pp, {pr < o}

= Pp, {1 - Z 1{Rz/5(Zs5) > R(Zs)} < a(l + B), R(Ss) < 3/4} +Pp, {R(is) > 3/4}

R
<Pp, {R(Ss) > 0, R(Ss) < 3/4} +Pr {R(Ss) > 3/4} < 2P {R(Ss) > 0}

< 2Pp, {max 185 — Ssllz > cag} <2> Pp {||ES —Ygllz > ca,z} <a,
SeS Ses

using (32) and the computations thereafter. As for part (ii), suppose R(Xs) > 2p, with p € (0,1/2) to be
chosen later, and observe that we can make a Type II error only under the event Bs := {R(Zgs) < 3/4}.
Then, for all Ps € Ps and B > 2(1 — o)/, we can use Markov’s inequality to show that

]PPS {pR > a}

} BPp, {RE/Q@SJ) > R(is)ﬁs}
<

B
Pp {1 + Z ]l{RE/Q(iS,b) > R(ES)} > a(l+ B),Bs a(B+1)—1

i=1

IN

%PPS {RE/Q(ESJ) > R(§S>7BS} < % (PPS {R(is) < p, Bs} + Pp, {RE/Q(EAJSJ) > p, BS})

2 (Pr {IREs) ~ RE)| > o} + Bn {|Realo) — Repa(@0)| 2 9,53 })

IA

where in the last inequality we used the fact that R(Xs) > 2p and Rg/g(@g) = 0. Tt is then enough to find
p € (0,1/2) such that
af

Pr, {|R(S5) = R(Se)| > p} +Pr {|Rep2(Ss) = Repa(Qs)| 2 p,Bs | < - ©)

To achieve this, we will draw on results from the proofs of Theorem 7 and Proposition 14, which are deferred
to later sections. In particular, the analysis of the first term in (9) follows directly from Theorem 7. For
the second term, we will draw on ideas from the proof of Proposition 14 to demonstrate that it suffices to
control the spectral norm of the covariance matrix of the bootstrap sample, which can be analysed using
Proposition 33 in Appendix D. Throughout the following, to assist the reader in following the argument, we
will explicitly reference the equations from the proofs of Theorem 7 and Proposition 14 whenever they are

used. Now, if we define the good set

As ::{|

_ = C
2 ||Dg Y2|las < 2/0min, Ts =5 5157

S-1/2 1 A—1/2 212|S] 212 1og(12|S|ns /aB)
2max |2 M2l Dl max [ X — sl < 16\/ 2 +8 :

2
min €O min

=M
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we have

Pr, {|R(Ss) = R(S5)| > p +Pr. {|Rej2(Es1) = Reya(Qs)| > p,Bs |

< Pp. {|R(Ss) = R(%6)| > p +Pr {|Reya(Ss1) — Repa(Qs)| > p/2.Bs }
(30) -~ ~ ~
< Pr {155 — Ssllas > op/2, As ) + P, {185, — Qsllas > cp/8, As, Bs } + 2Pp { AT}

(29) N - ~ ~
< Pr {15 — Sslles > ep/2} +Pr {551 — Qsllos > o/, As, Bs | + 2P, {195 — Osllas > 2}

+2Pp, {ID;°DY* ~ Kllas > 1} + 2P, {|ISs — Zsllas > ¢/2}
2Py, {2max 152 D2 ma X5, — sl > M, }
i€[ng

<Pr {II%s — Ssllzs > cp/2} +Pr {1861 — Qsllzs > cp/8, As, Bs | + 2P, {10 — Qsllzs > v?}

+ 4P, {ID; " Dy/* ~ Eillas > 1} + 4Pp {155 - Tsllas > ¢/2}

+2Pp, {rgax max | Xs:— pslle > 4v/|S| + 2V\/log(12|S|nS/aﬁ)}

€S i€ng
(35),(36) _ \ , o~
< 40P, {105 — Qsllas > ohincn/48v2 b + Py {1850 — Qsllas > cp/8, As, B}

+ 2Pp, {rgax max | Xs: — psllz > 4v+/|S] + 2v log(12|S|n5/aﬁ)}

i€[ns

Prop.28 ~ ~ ~
< 40Pp, {119 — Qsllais > othinep/480° | + IS maxPr {||Ss. — Qsllz > cp/8, As, Bs | + aB/6.

(10)

This shows that it is enough to choose p such that

max <4opp§ {||Q§ — Qglas > Ummcp/48l/2} .S/ max P, {||§S71 —Qslls > cp/8,.AS,BS}) < af/6. (11)

As for the first term in the maximum, an analogous argument to that employed in the proof of Theorem 7 en-
sures that 40P p, {HQg — Qsll2s > ammcp/481/2} < af/6if p > Cyp,c for a sufficiently large absolute constant

K, > 0. Asfor the latter term in (11), we focus on finding a p such that Pp, {Higl — Qsll2 > ¢p/8, As, BS} <
af/6]S|. This would conclude the proof. Now, first observe that under Bs, (5) implies that

. 1 N N  aa /o g A
1@sll2 < ——=—ISsll2 < 4|Ssll2 = 41D *Qs D5 ?||> < 4] Dg "2 [3]|2s]l,
1 - R(%s)

which is upper bounded by 32v2 /02
and z € [0, 1] we get

2. under As. Hence, using similar steps as in (33) and (35), for all S € S

Pp, {||§S,1 — Qsll2 > w,As,Bs}

~(33) ~ ~ _ _
< Po {1051 — Qslle > /2 A, Be | + P {ID5* — Lslla(1 + |1D5 1% l2) > o2yue/64v%, As, Bs |
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<Pp {051 — Qslls > 2/2, A5, Bs } + P, {I1D5Y/* — Isl2 > o2y2/1020%, As, Bs |
+ P, {ID5Y* 2 > 2,45, Bs

< Pp, {91 — Qslle > #/2, As, Bs } + 2P, {|Dg/” = Islla > 0%,,2/1920%, As, Bs }

~(35) N N . .
< Pp {||Qs,1 - Qsll2 > $/2a«4§7l5's} + 4Pp, {HQS,1 - Qsll2 > 012rlinx/384y27AS>BS}

< 5Pp, {051 — Qsllz > 02,0/38402, As, Bs }, (12)
which shows that it is enough to give a concentration bound for the sample covariance matrix of the bootstrap
sample. In this regard, recall that Algorithm 1 generates a bootstrap sample from the rotated data Xg =
(XS : S €8), which for all S € S and i € [ng] is of the form )N(SJ = A}g/Qiglmﬁgl/?(X&i — lis), where
Qs comes from the dual decomposition S5 = (1 — R(Zs))Qs + R(ig)ié As a result, for all S € S, the
sample correlation of Xg coincides with the sample covariance, and is equal to @5. Also, observe that, since
Xg,i = @}5/2§]§1/2ﬁ;1/2(X57i —is), we have Xélz) = @yzigl/zﬁglﬂ()(gg —is), where Xélz) is a bootstrap
sample from the original set of data Xg = (Xg1,...,Xsng). This implies that

QSl _ QS =ng -1 ZX(l)X(l)T ( -1 ZX(1)> ( -1 ZX(1)> _ AS

=ng! Z Q1/2 1/2B§1/2(Xg3 B ﬂs)(Xéfﬁ _ ﬁS)Tﬁ§1/2§;1/2@}g/2

T
. (nslem 1/2 1/2(ng? . > ( 1ZQ1/2 1/2 1/2(ng —ﬁs)> _@S

ns
=Qy? {nsl STESVA DS (XE) — ms)|[E5 D A (XY) — fis)]T — I

i=1
T
_ (nsl Zz—w B3 2(x ) - ) ( - Zz—w B3 2(x ) - ﬁs)) 5y,
We thus get for all x € [0, 1]
P {||§s,1 ~ Qsll2 > x,As,Bs}

ns
{IQsll Ing Y [£5"°Dg (XS] — ms)[E5"*Ds A (X ) — As))T —IS||2>x/2,AS,BS}

i=1

1Qsll21E5"21311D5 |13 |1n 512 —fis)|3 > z/2, AS,BS}

=1

sp{lnslz S52D5 A(x$) - s[5 Dg A (xS - fis))” 15||2>ofninx/64u2,As}
Hp{

Ing' D (XS — As)I3 > copyun /51207, As} (13)
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As for the first term in (13), observe that, under Ag and conditionally on the data Xg, we have
||E—1/2D—1/2(X(1) s < iren[%?] ||§§1/25§1/2(st 1s)]l2 < ||2—1/2|| HD_l/QHQiren[i?] | Xs.i — fis]l2

S-—1/2 ~N—1/2 ~
< I55"/2121 D35l {12s — sl + a1 — sl

ns

S-—1/2 N—1/2

= |55 [21D5 "2 { ng' D _(Xsi = pus)l2 + max [ Xsi - Ms||2}
i=1

<2|=5"2 121 D5 |l max || Xs, — psle <M as..
i€[ns]

This, together with Proposition 33 in Appendix D implies that there exists a universal constant K > 0 such
that

{ns Z s PDVAXY) — )52 D A (X)) — as)T —IS||2>ammx/64u27As}

ns
_ S-1/272-1/2, (1) ~ \ra—1/273-1/2, (1)  ~
<E P{nnsl D552 D5 (XS]~ Bs)[Es D (XS — )T~ Disilla > o /6407, As | XSH
i=1
Kyo?t . nga?
<2 — a2 14
- exp{ V4M210gns} (14)
As for the second term in (13), calling W = (W1, ..., W,,,) ~ Multinomial(ng, [ns], (ng',...,ng")), we have

{”nS Z MS H2 > CO'mm.CL'/512V ‘AS}
{Hns Z )(Xsi — ps)|la > \/cot, /51202, As, _max [W; — 1] < 310g(60|§|n5/aﬂ)}

—HP{max |W; — 1| > 310g(60§|n5/a,6’)}

i€[ng]
{|ns Z )(Xsi — ps)|la > \/cot. /51202 As, _max |[W; — 1| < 3log(60|S|ns/ap) | W}}
Prop. 28 TLSCO'4- T
+P{ max |[W; — 1| > 31og(60|S|ns/a < 5l8lex {— min }—i—a 60[S|,
{Ze[ns | > 31og(60[Sins/ 6)} PV 02 tog? G0fSIns ) J T PO0F
(15)

where in the last inequality we used Proposition 29 in Appendix D, which ensures that P {maxie[n s [Wi — 1] > t} <
nget/(t + 1)1 < nge /3 for t > 1. Now, combining (12), (13), (14), (15) gives for all S € S

KoY Angp? }
v10logng{|S| + log(|S|ns/aB)}

K3c?08 . ngp
+ 5191+ ex { min + aB/12]S|,
PV S tog (Sins ) § P

Pp, {||is,1 — Qsll2 > cp/&As} < 10exp {—
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for sufficiently large universal constants Ko, K3 > 0, which is upper bounded by «a/3/6|S| if

7

5
o s (e K20 [loatns) og(181/aB) {15+ log(Slns/a)}
Ses ol . c3/2 ng

g 2502 (15 +loa(S/ o)} o (Sins )

ges o6, ¢2 ng

Taking the maximum between this and Cyp, . completes the proof in light of (11). O

Proof of Proposition 2. We know from (41) in Appendix A that, in general, ¥g is compatible if and only if

Zejﬁ(uﬂ—l)ﬂ-l-z@j

JjEK JE€K

for all K C [d] with |K| odd. Additionally, we can argue as in the proof of Proposition 11 (i) to show that
at most one of these inequalities can be an equality when (61,...,604) are bounded away from {0, 7}, which

is true by assumption. We can thus write the null as

Ps(0)= () S0, <(K|-Dr+> 0;¢, (16)
KCld] JeK JEK
|K| odd

and its boundary as 9Ps(0) = xciq Fk, with
|K| odd

F= [ A 0 <(Kl=Dm+> 0, pne> 0;=(K[-D)m+> 6, (17)

K#K \jek jgK JjeK JgK

|K| odd
which shows that, in the case of a non-singular d-cycle, being on the boundary of the null hypothesis is
equivalent to being in the relative interior of a face of the convex polyhedron defined in (16). Now, the first
part of the result about the asymptotic validity in the interior of (16) follows from Theorem 1, so that it is
enough to analyse what happens on the boundary. In this regard, we will establish the asymptotic validity
of our test for the case when (61, ...,0q) € Fy1y (i.e. K = {1} in (17)), noting that the validity for the other
cases can be demonstrated analogously. In this context, since on the boundary we have R(f]g) < 3/4 with
high probability (w.h.p.) — a fact that follows by inverting the bound provided in Theorem 7 — it suffices
to analyse the bootstrap procedure. For asymptotic validity, we need to show that when (61, ...,60q4) € Fy1y,
the random variables R(f]g) and R’C\/Q(ESJ) | Xs converge in distribution to the same limiting law. We will
now analyse each quantity separately.

As for the former, since min{l + cos§;,1 —cosf;} > c for all j € [d] (assumption A2), we have w.h.p.

S0 < (K|-1)m+ > 0 forall K # {1}, (18)

jeK igK
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Under this event, an analogous argument to that in the proof of Proposition 11 (iii) gives

9 sin (§1+T$1> 6.5 2sin (m> d
- . — & 2 . 1~ n._3
R(Ss) = 1 B e P oL
(>s) 1 4 cos o1 o ( 2 ) 1+ cos el ; 7
L + ) +
[ogin (ter ) ) B B
= QSIH({\) sin w cos é — COS L sin é ) (19)
1+ cos 1 2 2 2 ?
i +

where (91, ...,%q4) are as in Proposition 11 (iii), and B = B(é\l, .. .,é\d) is such that 0 < B <0 — 2?22 t/9\j
and Zj 2P = B+ Zj 25» Furthermore, since R(3s) 5 R(Xs) = 0 as ng — oo, we have @; 5 6; for all

j € [d], which also implies that 3 (91, cee ) 5o. This, together with a Taylor approximation of Equation
(19) implies that
d
a sin 64
—61) (0; —0;) 1
(%) 1+ cos b, 01— 01) ; i) +op(1/v/n)

+

where /9\3 := cos™!(p;) and pj; is Pearson’s sample correlation coefficient. Now, it is known (Lehmann, 1999,
Example 5.4.3) that /n(p1 — p1) A N(0,%), where 77 = ~{(Pg1,2y) was defined in (2). For example,
if Py is Gaussian, it simplifies to 7§ = (1 — p®)®. This, together with the Delta method, implies that
\/ﬁ{@ —0;} 4 N(0,~2/ sin® 0;) for all j € [d], which further shows that

d

VIR(Ss) 4 0y (o3 (20)

1+ cosb; ‘i sin 0;

+

due to the independence between é\jl and §j2 for j1 # jo. The limiting distribution has a point mass of 1/2
at zero, and is non-degenerate for positive values, as sinf; > 0 by (A2), and there exists j € [d] such that
v: > 0.

As for the convergence of Rz/9(¥s;1) | Xs, we will split the proof in two steps. We will first show that
R(iSJ) | Xs converges in distribution to (20), using the fact that Qs is bounded away from singularity and
lies on Fy1y w.h.p., and then argue that Rg/Q(f]SJ) | Xs = R(igvl) | Xs + op(1/4/n). Regarding the fact
that @g is bounded away from singularity, observe that Proposition 11 (iii) implies that

min{1 + cos @;,1 — cos p;} > min{l + cosgj, 1- cosaj} for all j € [d]. (21)

In order to show this, observe that, under (18), we have that (1 — cos 51)/(1 +cosPy)=1—R(Ss) € (0,1),
which implies that @; < 6,. Similarly, ;> 5] for all j # 1. This, together with ¢, = 2?22 ©;, shows that
0; < @; < g1 <0y forall j # 1, which completes the proof showing that Qs is at most as singular as ¥s w.h.p..
Note that this happens with high probability because the good event (18) happens with high probability.
Furthermore, together with @; = Zj:g ©;, the non-singularity of Qs shows that (Py,...,Pq) € Fy1y whop..
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Hence, the previous argument applies and gives

.o~ d
~ Sin ~ ~
R(Es1) | Xs= L 3@ —31) =Y 0" — )y +o0x(1/vn),
=2

J +

where é}l)
and @; is such that % 6,. Now, observe that \/ﬁ{ﬁ(ll) —cospr} | Xs 4 N(0,7?). To see why this is the

o a{1,2 _ Ny o ith X Qi S, diag ™G A
case, calling Pé{lz}} = n{11,2} i X2y with X1 0y = Q{{Q}E{Lg} diag 1/2(0-%1)2})()({1’2},1‘ —H{1,23),
we have that v2( ~i{1{,22}}

diag71/2(0%1’2})()({1’2})1 — jug1,2}), which is equal to 7§ as 4?(:) is invariant under standardisation (to see

= cos’l(ﬁ;l)) and ,5;1) is the Pearson’s sample correlation coefficient for the bootstrap sample,

) converges in probability to the 72(-) coefficient of the standardised distribution

why, recall the definitions of v2(P), f(u,v,w) and S in (2)). We can then reproduce the same argument
as before, replacing s with @S, and conclude using Slutsky’s theorem that R(igﬁl) | Xs converges in
distribution to the limiting normal distribution described in (20).

As for the second step, observe that, since Py; ;113 has finite fourth moments for all j € [d], we have that
2371 | Xs 5 Qs, hence )\min(i&l) | X5 > Amin(Qs)/2 w.h.p.. On the other hand, we also proved in (21) that
)\min(éjg) > Amin(is) = ¢ w.h.p., hence Rg/g(flg’l) | Xs = R(ig’l) | Xs + op(1/+/n) using the definition of
R.() in (7).

Putting all the pieces together, we have just shown that also \/RRg/Q(ig,l) | Xs converges in distribution
to (20). Now, calling 7y, the critical value of the bootstrap test when B — oo for fixed ng, this shows that 7,
converges to the (1 — a)-quantile of the distribution in (20), which is positive for a < 1/2. Since the limiting
distribution of \/ﬁR(is) is the same, we conclude that the probability of rejecting the null hypothesis on

the boundary converges to a. O

7.2 Proofs for Section 3

Proof of Proposition 3. For any X € M and Xg € Mg we have

(AX, Xs)s = > > ((AX)s);5(Xs)jr = D > Xjjr(Xs)jy

Sesjies Sesj,i’es
d
= > X > 1 yes(Xs) = (X, A" X),
J,j'=1 Ses
as claimed. O

Proof of Proposition 4. The strategy is to use a semi-definite programming version of Farkas’ lemma. This
is well known in the relevant literature, but we provide a statement and short proof for completeness; see

Proposition 26 in Appendix C. First, rewrite the matrix completion problem

Y = (3s)j5, VS € Sy
Y =0

find ¥ € M such that
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as

(8, Ej50) = (£s)57, V5 € Syjr
S0

find ¥ € M such that (22)

where Ej; = (eje}: + ej/e?)/Q and e; is the j-th column vector of the standard orthonormal basis of R,
In order to apply the semi-definite version of Farkas’ lemma we transform our problem so that the equality

constraints have zero on the right-hand side. To this end, define

0 T/2 —(2g);» 0T
Hj = ej/ and Gs,jjl = ( S)” y
ej/2 O 0 E;p

and consider the completion problem

(S, H;) =0,V € [d]
find & € M such that < (33, Gg ;) = 0,VS € S}/ (23)
2= 0.

The condition (X, H;) = 0,V € [d] forces ¥ to be in block diagonal form

T
. Y,0 O .
0 b))

Now, observe that (22) has a solution if and only if (23) has a non-zero solution. Indeed, for every solution
Yo of (22), then diag(1, %) is a solution of (23). On the other hand, suppose that %y = diag(yo,0, X0) # O
is a solution of (23). This implies that 7o # 0, otherwise 0 = <20,G57jj/> = —0,0Zg) + 27 = Xj,
which would imply ¥y = O. Being 70,0 # 0, we can rescale the bigger block in S0 by 70,0, i.e. Xo =: 70,0G,
and get 0 = <207G5,jjr> = —70,0(Z5);57 +7,0G;;» = —(Xs);;7 + G,j7, which shows that G is a solution of
(22). This further implies that we can assume without loss of generality that 799 = 1 when (23) admits a
non-zero solution. Now, by Proposition 26, we know that (23) has a non-zero solution ¥ = diag(1, ) if and
only if

Y Koy Gasy = Y <<ES,XS> 1oT ) ) <<2S,Xs> 1 o*T > Lo

Sesj,j'es Ses 0 3Xs 0 2 A" X
for all collections of matrices Xg, not necessarily PSD. Now, this block matrix is positive definite if and only
if both A*Xg > 0 and (Xg, Xs) < 0. Hence, (23) has a non-zero solution if and only if (Xg, Xs) > 0 for all
Xs such that A*Xg > 0, and the claim follows. O

Proof of Proposition 5. Weak duality, i.e. LHS < RHS, always holds for SDPs (see Blekherman et al. (2012)),

but we include a short proof for the sake of completeness. In fact, for any Yg € Ps, we can rewrite

inf{e € [0,1] : ¥s € (1 — )P + ePs} (24)

33



as
inf{e € [0,1]: Bg € (1 — )P + ¢Ps} = 1 —sup{e € [0,1] : Xg € ¢PE + (1 — €)Ps}
1
=1- gsup{tr(E) B eP N —AY =5 0,511 =... =Xg4}-

Now, for any Ys € Pg such that A*Ys +Y = I; for some Y € Y, and any ¥ € P* such that ¥g — A¥ =5 0,

we have

tr(X) = (14, 3) = —(A"Ys+Y — 1, 3) + (A5 + V. X)) < (A"Y, X)) + (Y, X)
= (A"Ys, %) = (Y5, AX)s = (Ys, Bs)s — (¥s, U5 — AX)s < (Ys, Xs)s-

This shows that (24) is lower bounded by
1
1-— Einf{<YS, 2§>§ Y5 € 'Pg,A*YS +Y > Id}. (25)

Weak duality follows upon noting that A*X{ = I; and (X{,Ys)s = d and setting Xg = Y5 — X2. This is
not surprising, as we already mentioned that weak duality always holds for SDP problems.

We will now prove strong duality for this problem. Our strategy is to write our primal and dual problems
in standard form and check Slater’s condition for the primal problem (25). We already mentioned that (24)

can be written as

1
1-— Esup{tr(E) B EePH Y =... =344, X5 — AX =5 0}.
We now write this maximisation problem in standard form by introducing variables (Zs : S € S) = Eg—AY. €
P¢. Enumerating S as {S1,. .., Sn}, we instead optimise over block-diagonal matrices of the form
S 0 .- 0
0 Zg, --- 0
X=1. . .
0 0 - Zg

For such X our constraints are equivalent to X > 0,
<Ejj*E11,X>:O fOI‘j:2,...,d

and
<Ejj' + Es,jj/,X> = (Es)jj/ for S € S and j, j/ S S,

where E;; = (ejef + ej/ef) /2 is the binary symmetric matrix of the same dimension as X with its only
non-zero entries being in the (j,j’)-th and (j’,j)-th positions of the top left block, and where Eg;;; =
(esjes ; + es el ;)/2 is the binary symmetric matrix of the same dimension as X with its only non-zero
entries being in the (4, j')-th and (j',7)-th positions of the block occupied by Zg in X. Write C for the

diagonal matrix of the same dimension as X with I in the top left block, and all other entries equal to zero.
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It is now possible to write

sup{tr(X): X e P*, X =...=%4, Xs— AX =50}
=sup{(C,X) : X = 0is block diagonal, (E};; — E11,X)=0for j =2,...,d,
<Ejj/ + E57jj/,X> = (Es)jj/ for S € S and j, j/ S S}, (26)

so that our dual problem (24) is now in standard form. Our primal problem (25) is put into standard form

by writing

inf{(¥s,Ys) : A*Ys +Y = I3, Ys=s0, YseMs, Y e)}

d
= inf{z > (Zs)ijsgi s >, Y. ysgi By + Y i (B — Bu) = I,

SeSj,j'es SeSyj,j'es j=2

Z Z ys,jjEs 5 =0 for all S €8S, YjisYs,ji’ € R for all S, 7, j/} (27)
SeSj,j'es

With the problems written in standard form, it is now clear that (26) is the dual problem associated to (27);
see Theorem 3.1 in Vandenberghe and Boyd (1996). Observe further that the primal problem is strictly
feasible since Ys = X satisfies the linear constraints with Y equal to the zero matrix. Hence, by standard
duality results (Theorem 2.15 in Blekherman et al. (2012), Theorem 3.1 in Vandenberghe and Boyd (1996)),

we have that
sup{(C, X) : X = 0 is block diagonal, (E};; — E11,X)=0for j =2,...,d,
<Ejj/ + ES,jj/,X> = (Es)jj/ for S € S and j,j, € S}

d
= inf{z D (Bs)igysgi Y, > Usgi By + > (B — En) = I,

SeSj,j'es SeSj,j'es j=2

Z Z yS,jj’ES,jj’ =0 forall S €S, YjiisYs,jj’ € R for all S,j,j/},
S€eSj,j'es

and the result follows. O

Proof of Proposition 6. (i) Convexity follows easily from basic properties of the supremum. Indeed, consider
Y = )\Eél) +(1- )\)Eg) with A € [0,1]. Observe that R is well defined at ¥, as the convex combination
of correlation matrices is still a correlation matrix. Then, for all A € [0, 1],

1 .
R(Xs) = sup{ - g<X§, Ys) : Xs + XS? s 0,A*Xs+Y =0 for some Y € y}

1
=supqy — = (X, + (1 — 1 Xs + =s 0, s+Y >0 for someY €
{ (X ALY 4 (1= 0)SP) : Xg+ X0 =50, A" X +Y = 0 f Y y}

1

(1) 0 *
S)\sup{ d(XS,ZS )i Xs+Xs =s 0,4 Xg—i—YﬁOforsomeYey}

1
+(1-1) Sup{ - a(Xg,Eéf)) : X5+ X0 =5 0,A*Xg + Y = 0 for some Y € y}
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= AR(EM) + (1 - MR(ED),

and the convexity of R(-) follows.
(ii) R acts on Ps, which is the space of correlation matrices over the patterns S. Now, the spectrahedron

of all correlation matrices of dimension p,

1 X Tp—1
( ) X1 1 T2p—3
&, = (,7:1, ,x(p))eRz Sy = o\,
l‘p71 1‘21’73 .. 1

is called the elliptope, and identifies a closed subset of R(E). This follows from the fact that the symmetry

condition X x = E}; defines a linear subspace of RP of dimension (’2’), while the PSD condition v"Exv > 0
for all v € RP defines a closed subset of R(g), which is a convex cone. For further insights, refer to Laurent

and Poljak (1996). This implies that, for every pattern S, Pg can be identified with a closed subspace of R?,

where s = Yo ( ‘g‘). The continuity of R follows from the fact that every convex function that is finite on

R® is necessarily continuous (see Corollary 10.1.1. in Rockafellar (1970)).

To prove (iii), we will make use of the fact that the dual characterisation allows us to express R(Xg ) as
1 *
1-— Jsup{tr(Z) N EeP Y =...=2ga, Ny — AgX =g 0},

where d' = | Ugesr S|. Now, let ¥ be an optimal feasible matrix for Yg/, where all the diagonal elements of
¥ are the equal to each other by definition of R. Then, if we consider the restriction of ¥ on UsesS, call
it i‘g, it is clear that g — A§S|S =s 0, since ¥y — AgY =g 0 and Yg C Xg by hypothesis, while E‘S =0
follows again by Cauchy’s interlacing theorem. Hence, calling d = | Uges S|, for every S that is optimal for
Mg/, we can construct a feasible i‘g for Xg such that 1 — tr(i‘g) /d = R(Xg/). This completes the proof. O

7.3 Proofs for Section 4

Proof of Theorem 7. We are interested in finding C,, € (0,1) such that Vo € (0,1)
Pu, {R(S5) > Ca} <o
We have
Pr, { R(S6) 2 Ca | < Py {R(Ss) 2 Cay S5 25 SJo | +1 =Pty {5 51} (28)
Since Yig =g cls by assumption, we may bound the second part of (28) by writing

1 =Pg, {¥s =s cls} = Py, {ES — S5+ 5 =g CIS}
~ C = C
< Py, {Es —Xs=s 513} + Pg, {Es =s 515}

= C = C
< Py, {llES — sll2s > 5} + Py, {Zs =s 515} .
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This implies that
~ C = C
1—"Pg, {Es s ifs} < Pp, {||ES — Xsll2s > 5} . (29)

Now, define

Z 5,171 > (Xs)ig
SeS;
and observe that, for all X5 € Mg, we have (Xé’, Xs)s = tr(Xs). See Proposition 22 in Appendix B for a
proof of this fact. Using the arguments leading up to (6) above, the first term on the right-hand side of (28)

can be written as

N N 1 N N
Py, {R(Es) > Co, Xs =s Efs} =Pu, ¢ sup ——(Xs,Xs)s > Co, Xs =g ‘L,
2 Xs€Fcy2 2
where F /5 = {Xs+X{ =5 0, A*Xs+Y = 0 for some Y € Y, (Xs+ X2, §Is)s < d}. Discarding the condition
A*Xs+Y = 0 for some Y € Y and enlarging our feasible to F s := {Xg + X2 =5 0, (Xs + X¢, £Is)s < d},
we have

~ ~ C -~ S C
P, {R(ZS) > Co, Xs =g ifs} =Py, R>C4, Sg =5 *IS} < P, {|R* R| > Cy, Zs =5 §IS}

>ca}

{7~
:IPHO{ sup Xg—i—XS,ZS ZS>S—(t_r(§IS)—d)‘ zd-ca}
{

< Py, sup XS, S — Ys)s

Xs€ c/2

XCE.FL/Q

< Pp, { |85 — Zsllas - sup ||Xs+X§||*,de‘Ca}

Xs€Fc)2

<Py, {118 — Ssllos - 2d/c > d - C}

=Py, {115 — Ssllas 2 - Ca/2}, (30)

where we used Holder’s inequality for collections of matrices, and the fact that tr(Ss) = d, since Sg is a

collection of sample correlation matrices. Putting all the pieces together, we have

Py, {R(ES) > Ca} <Py, {||is — Xsllas > c- C'a/Q} + Pg, {His — 3sll2s > 0/2}

< 2Py, {8 — Tsllas = ¢ Ca/2}, (31)

since P{X > z1} + P{X > 25} < 2P{X > min{xz1, z2}}. Hence, in order to bound this probability above by
«, it is sufficient to find C|, such that

P, {llis —Ysll2s > ¢ Ca/Q} < /2.
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We have

IP’HO{Hﬁs — sllas > ¢ Ca/Z} < Pp, {rggéc 1€ — Egll2 > ¢ Ca/2}

Hence, calling

Kiv* [|S] + log(1/t

ag

n

min

for all S € S, with K7 > 0 sufficiently large universal constants, it is immediate to see using Proposition 14
that it is sufficient to take

2
> —
Ca c Igg‘é(ca/mgl(s)a

while ensuring C, < 1, in order to have Py, {||§]§ — Xsllas > c- C’a/Q} < «/2, and the first statement
follows. As for the last statement, observe that if R(Xs) > Cy + Cg, we have

P{R(Ss} < Co} = P{R(Ss) — R(Ss < Co — R(3s)} < P{R(Ss) — R(Zs) < —Cjs}
< P{|R(Ss) - R(%s)| > Cs} < B,

using the exact same concentration bound we employed to control the Type-I error. O

The analysis of R(ig) in Theorem 7 is crucially based on the fact that we can control the oscillation
|R(Ss) — R(Ss)| using maxges |Sg — Sg|l2, where the S are the Pearson population correlation matrices
and is are the corresponding Pearson sample correlation matrices. We now state and prove a tail bound for
the spectral norm Hf] — Y||2, where ¥ is the population correlation matrix and S is the sample correlation

matrix of complete data.

Proposition 14. Suppose we observe an i.i.d sample X1,--- , X, ~ X, where X is v-subgaussian random
vector in R with mean p. Let [i be the sample mean, and let Q and Q= n! S XX — ap” be the
population and sample covariance matrices, respectively. Let ¥ = D~Y/2QD~1/2 be the population correlation
matriz, where D = diag(Q), and & = D=Y2QD~Y/2 be the sample correlation matriz, where D = diag(Q).
Then, there exist a universal constant Ky > 0 such that, for every t € [0,1] such that Cy < 1, we have

P{|S — |2 > C;} <t where

Kiv* [d+log(1/t)
Ct = 1

ag

min n

and o2

min -— M ij :

J€ld]

Proof of Proposition 14. We will prove the claim by showing that it is sufficient to bound the spectral norm
of the difference between the sample covariance matrix and its population counterpart, for which classical

tail bounds apply. Now, observe that, for all « € [0, 1], the triangle inequality and the sub-multiplicativity
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of the spectral norm imply that

P{IZ -l > o} =P{|D"/2QD"1/2 - D712QD" /2|, > }
<P{|D"2QD1/2 - D7V2AD 2y > w/2} + P{D"VAQ - Q) D725 > w/2}
<P {||B—1/2§(ﬁ—1/2 — D7)y + (D72 = DTYHADT2 5 > x/2} +1P>{||Q Q2 > ammm/Q}
<P{ID2 = D2 Yl| Q1D 212 + D7 22) > 2/2} + P {2 - Qll2 > oZz/2} (33)
As for the first term in (33), using the fact that ||D_1/2||2 < 1/omin and ||Q2]]2 < v? due to subgaussianity,
we further have
P{IID~Y/2 = D72 @2(|D 722 + [D72]) > 2/2}
<P{IID~Y/2 = D2 Y|| QU (1D 12 + |D722) > /2, @2 < 2%, 1D~2 2 < 2/}
+P{|Q2 > 20°} + P{ID™2 )2 > 2/omin}
<P{IID72 = D723 > oina/1202 } + P{IQ = Qllz > 12} + P{ID™Y2 = D7V2||3 > 1/uin}
<P{IID2D"2 ~ Iy > 0%/120* } + P{IQ — Q2 > v*} + P{| DDV — 1]} > 1}
<2 {|D72DY2 — Il2 > ow/120% ) + PYIQ - Q> > 12}, (34)

where in the last step we used the fact that z € [0,1] and o2, < [|]|2 < v%. As for the first term in (34),

for all z > 0 we have

P{Hf)—l/?Dl/? ||, > x} =P {mzﬁqaj/aj 1> x}
S

IN

P a o —1| > x,max|6? /0% — 1| < 3/4 —|—IP’{aA2 2-—1>34}
?é[é]dgj/g] | x?é[;](\oj/o'j | < /} E_Té[;]d%/% | >3/

IN

J

IN

P{max|3j/aj -1 > m/Q} +P{max|02/a -1 > 3/4}

j€[d] JjEld

P{max|a Jo7 —1| > x/Q} + P{max|02/a —1] > 3/4} < 2P {max 67 /07 — 1] > z/2 A 3/4}
j€ld €ld

<P {mz{m;da — 02| > o2u(@/2 A 3/4)} - 21P>{||f) — Dy > 02, (x/2 A 3/4)}
JjE

— 2P { | diag(diag(® — Q))ll2 > 02 (2/2 A 3/4) | < 2P {0~ Qllo > 0% (2/2 A 3/4)}, (35)

where in the second and third inequalities we used the fact that |1//z — 1| < 2|/ — 1] for |z — 1] < 3/4
and the fact that |\/z — 1| < |x — 1], respectively. Combining (33), (34), (35) gives

P{Hi — 3y > x} < p{m Q| > ommx/Z} +IP{||§ Qs > VQ}

+4P {110 - Qll2 > 02,,(3/4 A 02 /240%) | <6PLIQ = Q2 > olhye/2407 ), (36)

using again the fact that = € [0,1] and 62, < 2, which shows that it is enough to control ||Q — Q|,. In
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this regard, for all > 0 we have
i {||§ — Qs > ac} =P {|n_1 zn:XiXiT — i = Q| > a:}
i=1

= 113’{””1 zn:(Xi — (X =) = Q= (-l > x}
i=1

< IP’{IITL1 i(Xi — (X — )" = Q2> x/Q} +P {7 - pl3 > 2/2}
i=1

=P%m*§fua—mma—mT—nm>xm}+P{m*ﬁfu&—mm>VGm}
i=1

i=1
x x \2 nw
<t cnst () st {2
<2-9 exp{ n32y2/\ 392 + 5%exp 62

where we used Propositions 28 and 32 in Appendix D in the last inequality. Inverting this bound leads to

19— Qlls < K102 /d—i—lo;;g(l/t) y d+10§(1/t)7 (37)

with probability > 1 — ¢, for a universal constant K; > 0 sufficiently large. Now, combining this with (36)

and (37) shows that
a Kiv* [d+log(1/t)  d+log(1/t
DEDIPE LAV UL (39)

min

with probability > 1 — ¢, and the assumption that C; < 1 allows focusing on the subgaussian regime. This
completes the proof. O

2

min

1/2

First, observe that the dependence on 1/0 is reasonable, as the smaller the minimum variance the

more problematic the normalisation matrix D~"/“. Second, observe that since we are restricting to the case

C; <1, i.e. n 2 d, the subgaussian regime prevails, and we obtain that

a d
BERTRCN
n

in probability. Similar rates, with logarithmic factors, were found in high-dimensional covariance matrix
estimation with missing observations (Lounici, 2014), sample covariance matrix estimator of reduced effective
rank population matrices (Bunea and Xiao, 2015), concentration of the adjacency matrix and of the Laplacian
in random graphs (Oliveira, 2010), and in the statistical analysis of latent generalized correlation matrix
estimation in transelliptical distribution (Han and Liu, 2017). In particular, using the additional assumption
that the data is generated according to a transelliptical distribution, Han and Liu (2017) gave an estimator
K based on Kendall’s tau and proved that

r(%)log(d)

)

(V[P
n
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where 7(X) := tr(X)/||X]|2 is the effective dimension of ¥. This is analogous to the bound given in Proposition

14, where we have an extra factor of v2/02 | which can be interpreted as the condition number and might

min?

lead to a suboptimal bound when it is large, and the ambient dimension d in place of the intrinsic dimension

r(2). This would improve the bound sensibly in the case of an approximately low-rank correlation matrix.

7.4 Proofs for Section 5.1

Proof of Proposition 8. Let 02 be a nonnegative collection such that av;(c2) = 1 for all j € [d]. Using, for

the third equality, the facts that Ay 14 also satisfies these properties and that av is linear, we have that
1-V(ed)=1- inf{e €[0,1]: 02 = (1 — €)Ay 1y + 0’5 with av; (o) = 1 for all j € [d]}
= sup {e €[0,1]: 0% = €Ayl + (1 — €)o’s with av; (o) = 1 for all j € [d]}

=suple€[0,1]: € < min min 6% ; y = min min o>
p{ 0,1] = jeld ses; o jEld) ses; I

as claimed. O

Proof of Theorem 9. We are interested in finding eV ¢ (0,2) such that Va € (0,1) we have
P, {R(Ss) + V(623) > CFHV)} <o

First, observe that
Pr, {R(Zs) > CSF+Y) 2} + Py, {V(63) > C{FHY) /23,

(B+V) such that

so that it is enough to find Cj
max {IPHO{R@S) > OV 191 Py [V (62) > CLRHY) /z}} <a/2.
As for the former, Theorem 7 applies, showing that
P, {R(Ss) > C™V)/2} < af2 (39)
if C((lRH/) > 2C, )2, as long as C, /o < 1. As for the second term, since V(02) = 0 under the null,
Pr, {V(63) = OV 2} = By, {V(32) - V(02) = OV 2} <y, {IV(32) = V()] = O+ 2}
=Py, {|jn€1%£1] gnelgn 0%, — gHelHil] qurélgn 0%, > CLEHY) /9

< Pp, {maxmax|05 — 0§7j| > CéR+V)/2}

j€ld] SeS
<30S P, {53, - ot | 2 OV 12}
sesjes
S P {A?— 21> CEHY) 2}.
(;eg |> max max Py, 105 ; — 0% > O/
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Now, the standard Chernhoff method for subgaussian and subexponential random variables (see Propositions
27 and 30 in Appendix D) gives, for all j € [d], for all S € S;, for all z < 82 (so that we can focus on the

subgaussian regime),

P, {163, — 02,1 > 2} <PQIng' > (Xsij —fis;)” —E[(Xs1; — ps ;)] > =
i€[ns]

<PQIng' > (Xsij — ps)® = Bl(Xs1; — s )’)l > 2/2 p + P{|fis; — ps 1 > z/2}
i€ng]
<2e nsa” +2e { nsx}<4e { st }<4e (minses ns)z*
Xp < — Xp 4 ———— Xp 4 — Xp{ —~— 22 270 4
= 2P T 102404 PUT g2 J = 2P U 100 = 7P 102404
This implies that, if CéR’LV) < 1612, Py, {V(Eg) > C((XR+V)/2} < «/2 is satisfied if
minges ngC? «
> ISI> exp{4} <,
<SeS 1024v 8
which further shows that it is sufficient to take
G 5 ¢ log (Sses [S1/2) w)
minges ng

for a universal constant Ko > 0. In order to satisfy both (39) and (40) at the same time, it is sufficient to
take the maximum between the two right-hand sides, while ensuring that CEHY) < min{2,16v%}, and the
first statement follows. As for the second part concerning the Type-II error, the proof follows similarly to
that of the second part of Theorem 7. O

Proof of Theorem 10. For the d-cycle, our measure of consistency of the variances is

2

V(Xs) =1 — min m 5.

in o
jeld) Se{{i—1.5}{4.i+1}}

We will show that testing
Hy:V(3s)=0 wvs. Hi(p):V(Zs) > p,

requires at least a separation of the order \/logm, and since H{ : R(Xs) + V(02) > p, the statement
would follow. Formally, this corresponds to assuming that Xg is always compatible, and constructing prior
distributions just on {V(02) = 0} and{V (c2) > p}. We construct a lower bound to show that the minimax
separation in this case is at least ¢y \/logd/rnw, where ¢; > 0 is a universal constant. Let

(o )l )
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and

1 1
P; = | N®" | 0o, 0 ..., N®% 0y, 0 ,
0 1 0 1-6
1
N@mi+1 [ 0y, 1+4 0 o, NOMa {0y, 0 ,
0 1 0 1

for j € [d], and 0 > 0. It is clear that each P; lies in Hq(d), and that

dP;
dTJf)((xl,h Y1) (T1n Y1m ) (T2,1,92.1)5 - -5 (Tding > Ydong)

- 1] U_lé)mexp{mé_&yih} II (1+15)1/2exp{z(lié)m?“’h}'

h€(n;] he€[njy1]

Now, using the same strategy outlined in Section 5, it is enough to control the Total Variation distance

d 2 d 2
1 1 { Z L dP;}
= <P, =) P -1

d
1 P, dP;, dP;, dP;,
1 dP,
&2 Z/ P, Z /dPO ap, 0T
J1,J2=1 J1,J2=1

Now, it is easy to see that if jo & {j1 — 1,71,71 + 1}, then [ dd]; dd];

also when jo = j; £ 1, since, for jo = j; — 1 =: j — 1, we have

dP;, dP; s s s b
2dPy = [ (1 —68) m-1/2(1 — §2)7"/2(1 4 §)ma+1/2 —?
T Tan = [ 51 8L ) T ey
X H exp{ 2 —Lyz } H exp{dxz }dPo
21+ 0) ah T o1 — o) Yih hCsa] 2(1 4 4) L0

T
1 1 Tj—1,h 1 0 Tj—1,h
= —————=€exp{ —= ’ ’ dx;_1dy.;_
‘/he[l;ll] 27(1 — 6)1/2 2 <yj_17h> (0 1i5> <yj_17h> J Jj—1

T
1 Zjh ﬁ 0 Tj.h
exp{ —— ’ dx;dy ;
/H 2 (1 62 2 (1 — §2)1/2 2<yj)h> (0 =) \wjn I

heln;]
1 1 Tl o
ZTj+1,h 5 Tj+1,h
X —————exp{ — = dx;i1dy. . 4,
/he[l;lﬂ] 2m(1+96)1/2 2 (%‘H,h) ( 0 1> (yj+1,h> ! i

which is equal to 1. Similarly, if j; = ja2 = 7,

dP dP]2 —n, —Nj41 d 2 d 2
/dPo dPOdP /(1 5™ (1+9) H exp{ T—5Yin H eXp ) 75T+ dPy

heln;] he€n;i1]

43




—-a ey [ ] el -

T
) 1 0 )
/ (xm> < 1+5> (xj’h> dajdy,
hen,] 2m Yi.n 0 =5/ \Win
1 L (Tjy1n T 0\ (zjn
Jj+1, 140 Js
x 5-SXPy 5 dw-ﬂdy- 1
/he[I;;I+1] 2m 2 \Yj+1n 0 1) \Yin e
T
— (1 _ 52) n]/2( 52 n]+1/2/ exp{ —= s 5 dacdy
hgj] V10 2 \yjin) \0 155) \win e

T
1-6 Tjt1,h %—rg 0 Tjn
X ,/ exp{ —= ' ' dx;i1dy;
/ [1;[4.1 2w 1 + 1) P (ijth) < 0 1 yj_’h A yj+1
— (1 _ 52)—7Lj/2(1 _ 62)—nj+1/2 — (1 _ 62)—(7Lj+nj+1)/2.

It follows that

4TV{PO,

Ul

d 2 d
1 dP;, dP;

P; — — L= Rgp 1
ZJ} dz/dpodpoo
Jj=1 J1,j2=

d

Z 1j,—j,(1— %)~ (Rt )/2 4 15,5,
]17]2 1
1 d
= — ( 62) njt+n;i1)/2 _
2
d =

1
d

U

di D exp{+(n +n41)6/2} — é

j=1

from which we see that TV{P07§Z?:1 Pj} < 1/2if § < /2log(1+d)/(nj +n;4+1) for all j € [d]. The

above bound on the total variation distance demonstrates that we may choose § = /log(1 + d)/ min; n;,

and hence that we have 1o

ming 1n;

as claimed.

Proof of Proposition 11. (i) We may suppose without loss of generality that |p;| # 1 as, otherwise, we may

perform the reduction given in Proposition 18. Possibly, this reduces the d-cycle to a 3-cycle: if there are no

more correlations equal to £1, then we proceed, otherwise we know R exactly thanks to Example 4 and we

can check that the claim holds. Now, calling M; ;41 = cos;, we have

1
A =1 —R(Eg) = Esup{tr(E) X 0,311=... =344, Xy — AY gy 0}
=sup{A\: M =0,My1=...=Mgg=1,1—X>|p; — Acos ;| for all i € [d]}

1—p; 14 p;
:sup{)\:/\gminmin{ 4 , tr },
i€[d] 1 —cosyp; 14 cosy;
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Z%— (IK|-1) 7T+Z<Pz for all K C [d] with |K]| odd}.
ieK igK

Now, this implies that

= inf {z 1z > maxmax{

1—cosy; 1+ cosy;
i€ld] ’

A L—pi = 1+4p

S @i < (K| -1)m+ > ¢ for all K C [d] with |K]| odd}.
€K igK

Calling g(p;) = (1 —cosp;)/(1 — p;) and h(p;) = (1 + cosp;)/(1 + p;) for all i € [d], this is a linearly

constrained finite minimax problem (see Chapter 2 in Polak (2012)), namely

= min max max{g(y;), h(v;)}
* i€[d]

>/‘,_.

under the 241 linear constraints

> @i < (K| -1+ > ¢ for all K C [d] with |K| odd,
ie K €K

which is equivalent to

minimise z
subject to g(p;) < z for all ¢ € [d],
h(p;) < z for all i € [d],
> i <(IK|=1)m+ Y ¢ for all K C [d] with |K| odd.

€K iZK

As a result, every optimal solution (¢7,...,¢}) must satisfy the Karush-Kuhn-Tucker (KKT) conditions
(see Chapter 5 of Boyd and Vandenberghe (2004), Chapter 28-30 of Rockafellar (1970))

(i) ( i - Aitd )Sln%— Z UK — Z wk, for all i € [d],

L—pi 1+4pi

|K |odd |K|odd
ieK ieK¢
(#1) X >0, Aapi >0, forall i € [d],
d
(i) Y (Ni+Aai) =1,
=1

() Ailg(pi) — max max{g(p;), h(¢i)}) = 0, for all i € [d],
() Aa+i(h(ps) — max max{g(¢i), h(¢i)}) =0, for all i € [d],
(vi) g(pi) < ?é%max{g(%)vh(w)}), for all i € [d],

(vii)  h(pi) < rig?jfmax{g(w),h(wi)}), for all i € [d],
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(viii) px >0, for all K C [d] with |K| odd,

(iz) > @i < (K|-1)m+> g forall K C [d] with |K]| odd,
ieK igK

(@) px | D> ei— (K|=1)m =Y ;| =0, for all K C [d] with |K]| odd.
€K igK

Now, observe that conditions (iv) and (v) imply that, for all ¢ € [d], either g(p;) or h(p;) reaches the
maximum, meaning that the minimal 1/\* is equal to this common value. Indeed, if the original d-cycle is
completable, this statement is trivial, since we must have |p; — cos | = 0. This is the only case in which

we can have
1—cosy; 14 cosy;

7

meaning that when the d-cycle is incompatible, then either max;c(q max{g(w;), h(¢i)} — g(¢i) > 0 or
max;e(q max{g(e;), h(¢i)} —h(pi) > 0. Indeed, if R > 0, either A\; or Agy; must be equal to zero since either
g(pi) or h(p;) has a strictly positive gap from max;e[g max{g(pi), h(®i)}. If both A; = 0 and \j 4 = 0, we

Z MK = Z MK,

| K |odd | K |odd
€K i€eKe

would have

which is a contradiction due to the fact that there exists a unique px # 0. To prove the existence part,
observe that if pux = 0 for all K C [d] with | K| odd, then we would have

( Ai iy
1—pi 1+4p;

) sing; =0
for all ¢ € [d], and since there exists at least a j such that A; + Ag4; > 0 due to (iii), this would imply that

¢, € {0, 7}, which leads to 6; € {0, 7}, which is excluded from our analysis. To prove the uniqueness part,
suppose there exists another [d] D M # K, with |M| odd, such that

2 i = (K[ =D)m+ > i

ieK igK
> =M =Dr+ > v
ieM igM

hence summing these equalities gives

2( Z i — Z %‘) = (K| + [M]| = 2)r.
i€eKNM ieKenMe

Now, if we suppose that K¢ N M¢ = &, meaning that K UM = [d], it is easy to show that 2|K N M| <
|K|+ |M|—2. Indeed, |K N M| < |K|A|M|, with equality if and only if M C K (or viceversa): in this case
we must have |K| > |M| + 2, otherwise they would be equal, hence 2|K N M| < 2(|K| A |M]|) = 2| M| while
|K|+|M|—-2 > |M|4+24|M|—2 = 2|M]|. If the equality is not reached, 2| KNM| < 2(|K|A[M|-1) = 2|M|-2,
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while | K|+ |M|—2> |M|+|M|—2 = 2|M| — 2. This shows that 2|K N M| < | K|+ |M| — 2, which implies
that the equality above can be verified only if ¢; = 7 for all i € K N M, which is excluded from our analysis.
Furthermore, if K¢N M¢ # &, this is even worse unless p; = 0 for all i € KN M€, which is again excluded
from our analysis. This completes the proof of the fact that for all ¢ € [d], if R > 0, exactly one between \;

and Ag4, is greater than zero. As a corollary, we have that the optimal (¢, ..., ¢}) satisfies
1= X\ =|p; — A cos |, for all i € [d],

as required.
(ii) The primal set is strictly feasible, hence we know that R is attained in the dual set, which is enough

to prove existence. As for uniqueness, suppose there exists two optimal X1, X5 such that

Ng = ANAD; + (1 - A%
Se = M AX, + (1 — A*)%2.

This implies that for all u € (0,1)
S = AN ARS1 + (1 - p)B2) + (1= ) (g + (1 — p)Xg),

meaning that uX; + (1 — u)X2 is optimal. By the optimality of 3; and Yo we must have that X and Xf
are maximally incompatible, which means they must all be singular, as stated in Example 4. Now, observe
that if there exists ¢ € [d] such that XY, ; , #3711y,

1 (20— 1)

/ /! —
Py T (L= )8 0y = (i(2u —1) 1 ’
which means that pX§ + (1 — p)X¢ can never be maximally incompatible since g € (0,1). This implies
that ¥ = X¢, which in turn implies that ¢} = 3. As for the continuity of ¢*(61,...,0q), observe that
L=\ =|p; — A cosj|, for all j € [d] in point (i) means that there exist {€; = £1}c[q such that
1 — €; cos B
PR Ak N all j € [d].

)

1 —€; cos ¢}

Now, let {0(") = (bin,---, Gd,n)} — 0 = (61,...,60,4), and consider the associated sequence of optimal

neN

{<ij = (P pr--+s ‘pfl,n)} , meaning that
neN

o 1—¢€jncosb;,

= ,  forall j € [d].
" 1—¢jncospl, jeld
Taking the limit on both sides, since A* is continuous due to Proposition 6 (ii), we get that

B 1+ cos b,
~ 14cos (limn cp;‘n)

A , forall j €[d].
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This shows that the limit lim, 7, exists, and by uniqueness (i), we can conclude that lim, ¢}, = ¢7,
showing that ¢ is continuous.

As for (iii), supposing without loss of generality that ¢; = max;c(q) 0, with at most 6; > /2, observe
that incompatibility is equivalent to having 6; — Z?:z 0; > 0, hence in order to make A\* as big as possible
we should choose p; = A\ cos ¢ + (1 — A*) for all j € {2,...,d}, and p1 = A" cos ] — (1 — A*). This would
imply that the optimal choice of signs for a general d-cycle is ¢4 = (—1, +1£_1), and this turns out to be
true indeed. To see why, start by considering the case d = 3, and observe that from (ii) we know that there
exists a unique K C [3] with |K| odd such that

Z KK = Z HEK-

|5 |odd |K |odd

€K ieKe
The possible values of K are {1},{2},{3} and {1,2,3}, and these are associated to the vectors of signs
(-1,1,1),(1,-1,1), (1,1,-1) and (—1,—1,—1), respectively. Hence, in order to prove the statement it is
necessary and sufficient to show that K = {1} leads to the optimal \*, meaning that AT > A5 and A} > A},

where
N 1+ cos by B 1 —cosby B 1 — cos O3
P 14 cospr 1—cosps 1 —cos(ph —@3)
A 1 —cosf; 1+costly 1 — cos B3
27 1—cosgt  14cosgs 1—cos(@s—@t)
_ 1+costy 1+ cosby 1+ cosbs

Ap = = = .
YT T4cos@gt  l4cosgs 14 cos(2m — @F — @B3)

Now, for A} < A3 to be true it is necessary to have

cos(pi — p3) < cos(Pf — P3)

L ek _ 1—cosbty *
cos P > 1 — e gt (1 + cos o)

~ % 14cosé *
cos g3 < —1+4 2222 (1 — cos p3),

with (0%, ¢3), (¢%, @3) € [0,7])? that need to simultaneously satisfy

cospy = 1 — 175282 (1 4 cos p}) ot < 01, 05 > 0y
and
cos B =1 — 175508 (1 + cos §3), @t > 0y, @5 < 0o,

to ensure R(Xgs,) € [0,1]. This system of inequalities has no solution in (@7, @5) for fixed (¢7,¢3) and
61 > 0. The same reasoning shows that AJ < A} can never be satisfied as well, showing that the optimal
choice of signs for d = 3 is indeed €3 = (—1,+1,41). For general d, it is sufficient to proceed by induction:
indeed, suppose that €; = (—1,—}—1]{1) for all j € {3,...,d — 1}, and consider \* = A\*(6,) as a function

of 64, for fixed 01, ...,04—1. This function is continuous over [0,60; — Ef:_; 6;), because is the restriction of
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A* =1— R(Zs,), which is continuous by Proposition 6 (ii), onto the last coordinate. Now, A*(8y) uniquely
identifies a vector of signs for varying 64 € [0,6; — Ef:_zl 0;), call it €(04), taking values in {+1,—1}¢. This
vector is unique because we supposed the cycle to be incompatible, hence either g(p;) or h(p;) in the KKT
conditions has a strictly positive optimal gap, so that there exists a unique px # 0. We will show that this
vector is constant for all 64 € 0,6, — z;i:_zl 0;), that is to say that each component of €(f;) is continuous in
04 €10,0, — Z;{:—Ql ;). Indeed, consider without loss of generality the first component of €(6;), and suppose
by contradiction that €(04); is not continuous in éd. This implies that there exists a sequence of angles {64, }

converging to 4 such that

ngl}rloo €(0an)1 = €lim = —€(fa)1.
Without loss of generality, assume €}, = +1 and e(éd)l = —1. But we must have by continuity

1+cosfy 11— e(édﬁ costh _ N(0a) = lim A(fan) = lim
T+cosp)  1—e€(f4)1 cospt n—+o0 M oo 1 — €(6g.)1 coS Ot

1 —€(04.)1 cosbh

1—cosf; lim €(f4n)1
—+00

nls 1 — €13m cos 01 1 — cos by

1 —€emcospl 1 —cospt’

1 —cos (ngr}rloo 901,n> ngrfoo €(0a,n)1

where cos 7 ,, and cos o7 are the (1, 2)-th entries of the optimal matrix of the dual in 64 ,, and 04, respectively.
This implies that A\* (éd) admits both representations, one with the plus sign, and one with the minus sign,

and this can happen only if the cycle is compatible, which cannot be the case for 6, € [0,0, — Zf;; 0;)

since 01 > Zgzz 6;. This means that €(;); is continuous for all j € [d] for varying 6, € [0,6; — Ef;zl 6:),

which implies that the vector €(6;) is constant on [0, 6, — Zf:_zl 0;), so that the behaviour of €(6;) is uniquely

determined by €(0). But we do know that

€(0) = (ea-1,€(0)a) = (=1, +15_5,€(0)a)

due to Proposition 18 and the induction step: this, together with the fact that €(0); = +1 in order to make
Y& maximally incompatible, completes the proof.
O

7.5 Proofs for Section 5.2

Proof of Theorem 12. Formally, we are looking at
Hy:R(Xs)=0 wvs. Hi(p):R(Zs) > p,

for fixed p > 0, and we aim at finding the smallest of such p’s for which we can have non-trivial power.

We prove the result by considering the two cases d > 42 and d < 42 separately. For the first of these, we
Iy P Iy —-P Iy Bly
ZS = 3 y )
PT I -PT I Bl 14
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and since R(3g) > 2 ?:1(0]2-(13) - %M by Proposition 13, it is sufficient to study the testing problems

d d
Hy: Y (6:)4 <0 vs. Hi(p): > (0:)4 >0,
j=1

j=1

where 6; = O'JQ-(P) — %, find the smallest p’ for which we have non-trivial power, and use the relationship
p = 4% p’. More precisely, focusing on the latter testing problem, we want to lower bound the minimax

testing risk

p*(ns,n) := inf {p >0:3ps € Ug: sup ngls(gpg =1)+ sup Pg{ls(gpg =0) < n}
Ps 0€Ps(0) Ps,1€Ps(p)
where Ps(0) = {Ps : Corr(Ps) = 3s and R(Xs) = 0}, Ps(p) = {Ps : Corr(Ps) = Xs and R(Xs) > p}, and
Us is the set of collection of tests coherent with S. To this aim, we start by defining two prior distributions

1o, 1 for P. First, there exist two measures vy, v; with matching moments up to the M-th order such that
L supp (v9) € [=b,0], supp (v1) € [=b,0] U { =}

Lo (k) 2}
L Vk € {0,1,...,M}: [ zFuo( dz) = [ 2Fvi( dz).

This is proved in Juditsky and Nemirovski (2002) using ideas from the theory of best polynomial approxi-
mation. A different, but closely related version, was proved in Cai and Low (2011) using similar techniques.
Such prior distributions have been extensively used in the minimax literature in the last decade, and led
to optimal, or nearly-optimal, lower bounds in many problems of interest such as optimal estimation of
nonsmooth functionals (Cai and Low, 2011; Jiao et al., 2016; Thépaut and Verzelen, 2024), testing MCAR
in a fully nonparametric setting (Berrett and Samworth, 2023), and testing convex hypothesis (Blanchard
et al., 2018). Let U(d) denote the (normalised) Haar measure over the Lie group of orthogonal matrices
SO(d) = {U € R4 : UTU = UUT = I,}, and let vg,v; the distributions with matching moments up to
the order M defined above. Calling §; the Dirac measure in zero, we define p; to be the distribution of
P =UTAU, where U ~ U(d), and A = diag(c1.4), with o1.q ~ y;-g)w/ﬂ ® 5?(d4d/2”, for ¢ € {0,1}. Observe
now that the support of y; also contains elements in (Ps(p))€. In order to overcome this, we will consider

the conditional measure p1|€, where £ is the event

d
d
§= {Zl{m—meZ} > 3},

i=1

which ensures that u|¢ is supported on the alternative. Now, given P, we use the shorthand

Iy P 1, -P 1, 1,
Ngnc = Ngbns (P) — [ y&m 0, ‘; ,N®n2 0, dT ,N®n3 0, d ﬂ d .
P Id —-P Id BId Id
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The marginal distribution of the data when P is generated according to 1| is then given by the mixture

distribution

I P 1, -P I I
E#1|§N§)ns = EM1\§N®H1 0, . 7EM1\5N®TL2 0, ! ’N®n3 0, ¢ Pl :
PT I, -PT I Bla la

Similarly, the marginal distribution of the data when P is generated according to u; is then given by the

mixture distribution

I, P I, -P I, BI
E, N&™ = (B, N®™ [0, ¢ B, N®"= (0, vems (o, (14 Pla) ) )
P, —-PT I, Bl Iy

for i € {0,1}. For every test collection ¢s € Vs, and for prior distributions pg, 11]€, we can bound the total

error probability as

R(ng,p') = sup ngs(gog =1)4+ sup PS@_TS(Qog =0)

Pg,oepg(o) PS,IGPS(p)
> By Ng™ (05 = 1) + Ejuy e NS (05 = 0)
E., N ({ps =1} N¢)
()

Rng 10 ®ng
>EuNg™(ps=1)+1— <5 B Vg (ps =1
10 e
BB NE™ (05 = 0) -

> Epuy N5 (05 = 1) + By N&™ (95

= B N (ps = 1) +1 -

)
ng 1
> B, NE™ (0 = 1) + ;

0)— -

ns ns 1
>1—TV (E, N&™,E,,, N&™) — 5

The second inequality follows from Hoeffding’s inequality, which ensures that for all d > 42,
9
>
H1 (5) =10’

since u1({b/4M?}) > 1/2 by II. This shows that it is now sufficient to control the total variation distance
between the marginals of Ngms with respect to the unconditional priors pg, 1 by finding b/4M? such that
TV (E,, N&™, B, N&™) < 1/2 —1/9. This would imply that R(ng, p’) > 1/2, and would lead to

, d b

P =3

where the extra d/3 factor comes from conditioning on the event . Hence, let us now focus on controlling
TV (E,, N&™, E,, N&™). We have

TV (EMONS@MS? Eul Ngns)

=TV |E,,N®" |0, fa P JE N®™ | 0, fla ——P  N®na [, la Pla ,
PT I, -PT I Blg g



Iy P 1, -pP 1, 1,
EM1N®n1 0, d 7Eu1N®n2 0, d 7J\/v(gmg 0, d ﬂ d
PT 1, -PT 1, Bly I
I, P I, —P
_ ®n ®n
_TV{@MON 1<0, (PT Id)),EHON 2<o,<_PT 1>>>
I; P Iy -pP
N ®n
Id P Id P
<TVSE, N® |0, JE,, N®™ |0,
Iy —-P Iy -—P
+TVIE, N®= |, JE, N®"= | 0, .

Dealing with such pg, pt1 is not straightforward, due to the presence of the integrals with respect to the Haar
measure. Nonetheless, following similar ideas as in Thépaut and Verzelen (2024), we upper bound the total

variance distance above using the following two lemmata, where we suppose P to be symmetric.

Lemma 15. Let P be symmetric, with spectral decomposition P = UTAU. LetU(d) denote the (normalised)
Haar measure over the Lie group of orthogonal matrices SO(d) = {U € R4 : UTU = UUT = I}, and let
Vg, V1 the distributions with matching moments up to the order M defined above. Denote by u; the distribution
of UTAU, where U ~U(d), and A = diag(c1.q), with 01.4 ~ yE142 6?(‘1_[‘1/21). Then

3

1y P 14 Vig
®n ®n
TV {EMON (O, <PT Id)) ’EMIN (O7 (PT Id)) }
I T I Lo 00 0T
<[d/2) TV Bay { N (000, [ 0 ™ ) ) 4 Ba, { VO (000, [ 0 T )
nuu I, n'u'u 14

where o (resp. 1) is the distribution of nuu® (resp. n'u'u'T), where n ~ vy (resp. ' ~ vi) and u =

ug,05_ ) (resp. u' = (u),,0%_.)) is such that ug (resp u', ) is a uniform sample from the d’-dimensional
d—d da»Yd—a d

sphere S¥ =1 = {x e RY : ||z]|y = 1}, with d' =d + 1 — [d/2].

Lemma 16. With the same notation as above, then

I T I Lo o 0T
TVZ{ Ez, { N | 0q4, a Bz, ¢ N [ 09q, ¢ G
77uuT I, T]/U/U/T 1,

< 3 (M e (oot )

k=M+1

Applying these lemmata, it follows that

I, P I, P
TV{E,,N®" (o0, * E,, N® (o, ¢
PT I, PT 1,
I nuu® I, n'u'u'T
< [d/2] TV Ez { N®™ [ 0q, JEz { NO™ | 0qy,
= { { <2d (WuT 1y >>} { <2d (n’U’U’T L
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oo

<t Yo (M0 st ([ et - i)

k=M+1

where the first inequality comes from Lemma 15, and the second from Lemma 16. Here u; is the first
coordinate of a uniform random vector in the d’-dimensional unit sphere, and vy, v, are the distributions

with matching moments up the order M defined above. Now, observe that u? 4 VAS Z?lzl Z? where

z; "R N(0,1), due to the fact that the standard normal distribution is isotropic. Hence u? ~ Beta(%, 1)
since if X ~ x*(a) and Y ~ x*(f) are independent, then 35 ~ Beta (%, g) It follows that
12k 2\ /=3 1, k-1 -1
1-— 1-—
R e e =
-1 B(%5.3) 0 B(7=,3)
_ Bkt T+ T()
B(%5,3) L(3) T(5 +k)
Moreover
2 1 2 .
k k 2
(/n [vo(dn) —Vl(dn)]> < (b (1—1— 4kM2k>> < 4b%F.
If we choose b? = %, we have

= (k+n-—1 2k K, . 2
S () my (f vt )
< (k4n-1\Tk+31) D&
<12 ( n—1 ) I(3) F(%Jrk)bk

f Mok Tk+D T
"2 EcETL
p

)2 ) F(;: + k)2—k < 4.9~ (M+1) _ g-(M-1)
O(Z 4 k) nfT(n)

The second inequality follows from the fact that F(Ziklitlé()l)
2

that

< 1, while the third one follows from the fact

l‘f?ﬂ‘,?) has derivative ¢ (a)—¢(a+k)+k/a >

0, and is therefore increasing. Thus, whenever n > d/2 > d’/2 the inequality follows. Summing up, if we set

Indeed, writing 1 for the digamma function, the function x — log
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b/AM? = d/{4(n1 Anz)}, we have that

I; P Iy P
TV (EuoNgnS7E#1N§§ns) <TV {EH0N®m (07 (P(; Id)) JEMN@nl (0’ (PU; Id)) }
I —P I —P
mn @n
M {]EHON 2 (O, <_PT Iq >> Fe (O’ <_PT La )) }

M-—1 M

<ofd/2)27 M < (d+1)2- %5,

which is upper bounded by 1/2 — 1/9 if and only if

d+1)—log(1/2 —1/9)
log 2

1
M olosl 1.

Hence, this shows that
b > d
AM? ~ \ (ny Angy)loghd

is sufficient to have TV (E#0N§®"§,E#1N§®"S) < 1/2 —1/9, which implies that R(ng, p’) = R(ns, gﬁ) >
1/2. This allows us to conclude that

fo 3 b d
Ptz =p = 2 at
4d 16012 (n1 Ang)log™d

We finally turn to the simpler case d < 42 and show that testing

Hy:R(Xs)=0 vs. Hi(p):R(Zs) > p,
requires at least a separation of the order y/1/(n1 Amng). To this aim, we consider Xg = {Iog + A, I24, 24},
with

0, otherwise,

A

iy =

and show that R(Xg) > §/2. This follows from the fact that X = {6, — %Igd, O,y — %Igd, —%Igd}, where

3d 3d 3d 3d
ST SN AT SN
_3d +37d 2,2d—2 _|_ﬂ _~_37d 2,2d—2
@ _ 4 4 d @ _ 4 4
1= an 2 = 9
O24-22 O2q_2 O2q_22 O2q_2

is feasible as Xg + X = {01,09, 024} and A*Xs is diagonal with tr(A* Xs) = 0. We then bound the total
error probability by choosing

Pgoe = (N®" (024, I2a), N¥"* (024, I24), N (024, I24)) € Ps(0),
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and
P& = (N®™ (004, Iza + A), N¥"2 (044, Ina), N¥™ (024, I2a)) € Ps(6),

and using the fact that

R(ns,d) = inf{ sup  PS(e—S=1)+ sup PI¥(p—-S= 0)} >1—TV(PS, PE)
S \PsoePs(0) Psa€Ps(8) ’ ’

>1—TV(N®" (024, I24), N¥" (024, I2q + A)).
. 16
Now, if Py := N®™ (0, 15), P, := N®™ | 0y, s 1)) e have

4TV (N®™" (024, I24), N (024, I2q + A))2

P,
= 4TV(Py, P1)? < X* (P, P1) / d 1) dPy — 1

P,

2
1 sin §
= —— — 21 Py—1
cos%lé/ Hexp ( ><y> COS”(SM 1) )

= {(2 = cos?6)? — 4sin? 5} ™/2 — 1
( )—n,1/2 —1< 6"162/2 -1

)

from which we see that TV (Py, 1) < 1/2 if § < y/2log2/n;. The same holds true if we switch the

roles of n; and ny. The above bound on the total variation distance demonstrates that we may choose

d = 4/2log2/ny A ny, and hence that we have

2log2
ny /\712’

as claimed. O

Proof of Lemma 15. Let ¢(z) denote the density of the d-dimensional Gaussian law with respect to the

Lebesgue measure. By the triangle inequality we have that
I, UTAU I, UTAU
TVJ(E N | 0g4, JE NO | 0y,
[d/2]—1 T T
Iy U"AU Iy U'AU
< TVIE, { N®" [ 0y, JEr N®™ [ 0yq, ,

where ; is distribution of UTAU, where U ~ U(d) is common for all 7;, while A = diag(c1.4), with
O1:q ~ ugg([d/z]*j) ® l/i®j ® 5?Ld/2j7 for j € {0,...,[d/2] — 1}. Observe that mo = po and 7427 = p1, S0
that this inequality essentially interpolates pg and pq with [d/2] intermediate measures such that, for every
j €A0,...,[d/2] — 1}, m; differs from 7,11 only for the distribution of o; in A. Now, consider a generic
j€40,...,[d/2] — 1} and define S :={1,...,[d/2] —j—1,[d/2] —j+1,...,[d/2]}. We will show that we

55



can bound each term of the summation above by

I T I Lol o 1T
TV ]Eﬁ'o N®n 02d; ¢ e 7]E7~T1 N®n 02d7 ¢ e )
nuu’ I n'u'u'T 14

with 7o, 71 defined in the statement, and this would conclude the proof. To this aim, observe that if
X I UTAU
~N 02(13 ¢ )
Y UTAU 1

X|Y ~ NUTAUY, I; — UTA%U)

then

Y ~ N(0g,1,).

This allows us to write

I UTAU I UTAU
TVy:=TV{E. N (0pq, [ ¢ Ep A NE (00g, | 0
! UTAU 1y ! UTAU 1,
~ [T
=1

- Eﬂ'jJrl {H |I - UTA2U|_1/250((I - UTAQU)_UQ(CCZ' - UTAU%‘))}
i=1

Ex, {H [ = UTAU |7 2((T = UTAPU) ™ (s — UTAUym}

i=1

dxdy,

where dz = dx; ...dzx,, and similarly for dy. Now, let Ug be the restriction of U to its columns in S.
By definition of m; (resp. mj41), we can write UTAU as UTAU = nuu® + UYL diag(o_;)Us where o_; ~
ng)([d/zw TR ® v ® 68%7 [4/21 " \where 6y is the Dirac measure in 0. Write 7 for the distribution of
(Us,diag (o—;)) and fo (resp. f1) for the conditional distribution of (u,n) given (Us,diag(o_;)): this is
given by n ~ 1 (resp. v1), while u|Us is sampled uniformly from S¥~' N U é‘, i.e. the intersection between
the d-dimensional unit sphere S9! := {z € R%: ||z|| = 1} and the orthogonal complement of the columns
spanned by Us. First, observe that dim(S%! NUZ) = d + 1 — [d/2]. Secondly, observe that for every

measurable function h,

BN(P) = [ 1(P)ry(dP) = [ h(P)fo(du.dn)s (dUs. do-)

and similarly for 7;41. This allows to bound the TV distance above one step further as

TVoS/f[@(yi) /

- /H [I —U'TA?U |7V 20((I — UTAN?U ) Y2 (@ — UTNUy,) fr(dud, dy') |7 (dUs, do ;) dedy
=1

n

|7 — UTA2U|*1/2<,0((I — UTAZU)71/2(J?Z' - UTAin)fo(du,dn)
1
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_ /Hu—_ UITAIQU/|_1/2@((I—UITAI2UI) 1/2( U/TA/U/yZ)fl(du dn)
=1

dm) (dUs,do—_j;) dy,

where in the first step we used Jensen’s inequality, bringing the common 7 outside the absolute value, while

in the last step we used Fubini-Tonelli theorem with positive integrand. Consider now the innermost integral
/’ /H T — UT AU 2((1 — UTA2U) Y2 (25 — UTAUy:) fo(du, dn)

_/Hu_U/TA/2U/|71/2<)0((I_U/TA/2 ) 1/2( U/TA/U/ )f1(dul,d77/) dx

/ ] / Hu UT AU (T — UTA2U) (a0 — s — S ol i) foldu, diy)
k#j

_ /H |I _ U/TA/ZU/|71/2§0((I_ U/TA/2 ) 1/2( n/ululTy _ Zakukugyz)fl(dul7dn/)
=1 k#j

dx

for fixed Ug, 0_j,y. This can be simplified to
S| [T = 0732017201 07 820) 20, = ) s,
i=1
n
—/H|I—U/TA/2U/|_1/2¢((I—U/TA/2 ) 1/2( n/ululTy ))fl(du/7d77l) dl‘
after the change of variable 2} = x; — >3, orurul yi, for all i € [n]. Now, observe that, under fy, we have

(I -UTAU)2 =

U; U

1 T 1 T
uus + i )
\1—n? ; 1—o? ‘

which yields

I—-UTAU|7Y? =
| e

i#]

similarly under for (I —U'TA”2U’)~1/2 under m;, with o/, %’ in place of 5, u. Perform the change of variables

1/2
- Z orupul i,
[y
for all ¢ € [n], whose Jacobian is
1/2
n n
HI—Zoiuku{ HH‘/l_Uk
=1 kA i=1k#j
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We get

wuly; fo(du, dn)

||790 E ulu + — 2 — ——
/‘/i—l\/ln2 i#j vl 77 Vi=n?

1 !
> u! + ———=u'u" 25— —— Ty, | fi(du,dn)

S (St e )+

dx

i#]

1
Zuzu + " | (zi — T y;) | fr(du,dn))|da

i#] V1-=n"
gl et e

_/Hﬁ@( I — n/2u/u/T)*/ ( ﬁ/U/UITyz)) f1(du/,d7]1) dr
/ ] / Hyf nrua®| o (1= Pue®) ™ (5 = uay,) ) foldu, di)

- / L1 o™ (1 =™ 77 o = ) ) fuda )

=1

dx

=TV {Efo{N r(puu”y, I — (puu”) (nuu™) ")}, Ep AN (n'u'u' "y, T — (n’U’U'T)(n'U’U'T)T)}}-

Coming back to the initial TV distance we wish to bound, we get that

I TA I TA
TV ET{‘ N®n 02d7 ¢ v v a]Eﬂ' +1 N®n 02da 4 v v
? UTAU Iy ’ UTAU I
< / TV {Efo{N En(quu”y, I — (puu®) (nuu”) ")}, Ep AN (n'u'u'"y, T — (n’U’u’T>(n'u’u’T)T)}}

o(y)m (dUs,do—;) dy

n Iy nuu® o Iy n'u'u'T
= /TV {Efo {N® <O2da (nuuT Id >> } 7]Ef1 {N® <02d7 (n/u/u/T Id W(dUS,dO'_j)
I T I 1o 00 0T
=TV Efm N®n 02d7 ¢ e »Efu N®n 02da ¢ e )
nuu® I n'u'u'" Iy

(resp. n'uw'u'T), where n ~ vy (resp. 7' ~ v1) and u

where 7o (resp. ;) is the distribution of nuu”
(resp. ') is sampled uniformly from a d’-dimensional unit sphere embedded in RY, with d’ = d+ 1 — [d/2].
Now, since the Gaussian distribution is invariant under orthogonal transformation, we might assume that

u = (ug,0%_,), with ug uniformly sampled from the d’-dimensional sphere 8?1, and the result follows. [
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Proof of Lemma 16. Consider
i 1 —1/2 - -
/H — ((I — 772uuT) / (z; — nuuTyZ-)> [o(du, dn) — 71 (du, dn)]|dzdy,

/ [Tew| [ 11 7=

and observe that )

(I — 772uuT)71 =1+ 1 j nzuuT.

Hence,

2

e uuT) (2 — nuuTyi)}

_ 1
© ((I — nzuuT) 12 (2 — nuuTyZ-)> = (27r)—% exp {—Q(Zi —nuuTy)T (I +

1 1 n? 1 1t
= (27‘1’)_% exp {—QZZ-TZZ' ~ 37 i 7 2l uu® 2 — §n2yiTUUTyi - 37 i 7 yluuy;

3

1 1 n? 1 n?
= (277)_% exp {—zrzi ~5 277 2luu® 2 — = U yi uuly; + 1 _77772 leuuTy,}

2% 1— 12 21— 2
= ¢(2;) exp {_;1227722?1“;21 _ %1 22112 vy uuy; + : _77772 zZTuuTyZ}
T
= ¢(z) exp —;<<_1ﬁ372 UZT 1”;”21:5> > (Zz> <21> ) ¢ = e(z)g(n; s zi,yi)-
112 172 Yi Yi
Hence,
TV, := /ﬁw(yz) /ﬁ 11_77250 ((I ud) 2 (2 — nuuTyi)) [7o(du, dn) — 71 (du, dn))|dzdy
j i=1

dzdy

/ H \/1177729(777 U, 24, yl)[ﬁ-o (dua d77) - (dua dn)]

< / 1_1 o (z0)0(w1) [ / 1_1 ﬂl_in?g(n, , 24, ) o (du, dy) — 7 (d, dn)@ dedy,

where we used Cauchy-Schwartz inequality in the last step. Thus, it follows that

TV? < / [TeGew) 3 Y (-1t

k=0,15=0,1

(//Hmﬁg(mu,zi,yi)g(n’,u’,zi,yi)ﬁk(du,dn)ﬁj(dU'ydn’)> dzdy
=3 S [ fasmyra gy

k=0,17=0,1

(/Hg(n,u,zi,yi)g(nﬂu’,zi,yi)w(zi)w(yi)dzdy> i (du, dn)7;(du’, dn)
=1
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Z k+_/// 1_ n/21 n/2)—n/2

k=0,1=0,1

(H/g(n,u,zi,yi)g(n',%zi,yi)w(zz')sa(yi)dzidw> i (du, dn)7j(du’, dn'),
=1

where in the second equality we used Fubini-Tonelli’s theorem to change the order of integration, and Fubini’s

theorem to factorise independent integrands in the last one. Let us consider a generic
[ stz 900z,

bearing in mind that u = (ua,0%_,),u’ = (u},,0%_, ), with ug,u/, being independent and uniform samples
from the d’-dimensional unit sphere, where d' = d + 1 — [d/2]. We have

/ 9010 20, 93) g0 1 22 )0 (20) 0 (s dzadys

2
1 L/ ) T A— Yy
= 21) %exp{ —= L=n Lom +
/( ) p{ 2<<— 1T EZQUUT

Now K takes the form

T 1y

/
— T — 1"n u'u’T Ig+ 7

/2
T T 1,,1T
- Ig+ 1+ 772uu + 1 ,guu "Quu — 7 mu'u
K = .
1-n

It is straightforward to show that

g Sk 0 0 R - D
A=m)1=n?)  A=n)1-n?)

but, since it requires some lengthy algebraic computations, we defer its proof to Lemma 17 below. Now, it
follows that

e XY o [ famaa

k=0,14=0,1

<H/g(n,u,zi,yz—)g(n’,u’,zi,yi)cp(zi)so(yi)dzidyi> i (du, dn)7;(du’, dn)
i=1
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_ Z k-‘rj// —n/2 1 n/Q)—n/Q‘K|—n/27~Tk(du7dn)ﬁj(du/7dn/)
k=0,1j= 01

D e / / L (dudnyE(add)
. (1 —ufngny)™
k=0,14=0,1

o0

IDIDNCIacy N (hﬂll) uftnf'nf" o (du, dn) s (du' diy)

h=0k=0,1 j=0,1

3 ("1 s (f ntan - mcam)

k=0

S (M Vet ([ o totan - V1(d77)])2,

k=M+1

since vy, 11 share the first M moments. O

Lemma 17. Let

1 n

2
__n T __n 1T n T 7 10T
Tz Ul Tl I+ To Ul T U

/2 ’
K <Id + 1 zuu + v - puu® — J,ZU’U’T>
- b

where u,u’ are d-dimensional unit vectors. Then,
(1= (u"u)*nn')?
(I=n*)(1—n")

Proof. Let a =n*/(1 —n?),a' =0?/(1=0?),8 = —n/(1 =1*), ' = —n'/(1 — ). We aim at finding |K],

where

K| =

K Id—i—auu + o'y u'T BuuT—i—ﬁ’u’u’T
B BuuT + Bu'u'T Iy + cwulau/u'T )

First, observe that by Schur’s complement

//T

|K| = |Iq + cun” + o'u

Id—|—auu —|—O/ / /T (5uu +ﬁ/ / /T) (Id+auu _|_a/ / /T) (,Buu +ﬁ/ / /T) ’

and that we may assume without loss of generality that v’ = e;. Indeed, let R be any orthogonal matrix in

R%4 and consider Ru, Ru’' in place of u,u’ respectively. Then

I+ aRuu” RT + o Ruv'TRT I+ auu® + o JTRT

= ‘R(Id—i—auu + o/u'u'T)RT

|7

I + cvu” + o/u'u/'T

and it is easy to check that the same happens for

Iy + aRuu” RT + o/ Ru'v'TRT
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— (BRuu™R™ + B'Ru/v'"RT) (I + aRuwu™ RT + o/Ru'u’TRT)_l (BRuu™ RT + ﬁ’Ru’u'TRT) )

This is not necessary for the proof, but it helps with the notation, and also explains why u7 v/ 4 u1 when u

and v’ are sampled as described when we apply the result. Now, for all a, o/ € R,

/
-1 le' o
I+ ouu” + o’erel =] - —wul — —ejel+
( 1 ) 1+a— 1(10;/72 14+a — Sraa/,yQ 1
o o . o o .
+ 7 eru + / ue
71+a’1+a—1ofa,72 ' 71+oz1+o/——fff;,vQ .

where v = e u, and

I+auu” +d'eref — (Buu” + Bere]) (I + auu” + cu’eleip)71 (Buu™ + B'ere])

22,12
y'nTn T T nn T T
=1+ (uu' +erey) — (eru” + uey).
1 — 2022 1 —~2n2n2

Calling = = (v?n*n?)/(1 — v*n?n’?) and ¢ = vy, we thus have

|K| = Iz + auu® 4 o’e el

Y/ _
Id+ar:uuT4—xelelT—E u e ( el )‘
VA

In order to compute these determinants, we will repeatedly make use of the fact that, if A is an invertible
n X n matrix, U,V are n X m matrices, then

|A +wu”| = |L, + VTATIU|| A
If A= 1I,, this is commonly referred as the Weinstein—Aronszajn identity. Now,

I+ auu” +d'ejel I+ auu®

‘1 + /el (I - auu® /(14 a))e;

/
=(1+a) <1—|—O/— ad 72>,

and

1Y/ _
Id—&—:EuuT—f—gceleiF—f u e ( e )’
T

I+ zuu’ + xele{

I—i<_ “ _> (Ig+ zuu” +zerel) ™ [u e

I_x<_ 61 _>
C —_ u [—
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where 1 = —z/(1 + = — 1-Tz72)7 7o = yx71 /(1 + x). Putting all the pieces together,

oo’ 22
Kl=(1 1+ao — 2) 1 1 - 2
|K| = ( +a)< +a 1—|—a7>( +x)< +z 1+$7
T 211\ 2 z? 2 2
X\ A=+ 2y +2(1497)))" = F A+ 71l +97) +2727))° ),

and substituting the expressions of a, o/, z, c, 71, 72 as functions of 1,7,y gives

_ (=)
= amma e

as claimed. O

Proof of Proposition 13. We start by proving the first statement. Since g is consistent, we have that

I, P -P
Ys is compatible if and only if PT I, BI;| =0
-PT Bl 14
I 1 pPr'p _—pTp
if and only if a Pla — =0,
BI, I, _pTp pTPp

where the second equivalence follows by standard properties of Schur complements. However, we can see

that
T
. { T { I; Bl rPT'p _—pPTPp } T d}
inf - rx,y €R
y Bly I -PTp PTP y
= inf{[lz — y[l5 +2(1 + B)a"y — | P(z — y)||5 : 2,y € R}

inf {|[v][3 +2(1 + B)(v + )Ty — | Pv[l3 : v,y € R}

1—
inf{zﬂ||v|§ —vTPTPy:ve Rd}

ot (152 1712)2 v 0.0}

where the third equality follows on noting that the minimising choice of y is given by —v/2. It is now clear
that s is compatible if and only if ||P||3 < (1 — 3)/2, as claimed.

As for the second part of the statement, let vy, ..., vy the orthonormal eigenvectors or PT P with eigen-
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values A1 > ... > Ay, and let L be the maximal ! such that A\; > (1 — 8)/2. For [ € [L], define
O _ € 2PvlvlTPT 72PvlvlT 2PvlvlTPT 2PvlvlT 'vl'vlT/Q f'vlvlT
S A \ 200" PT vl /2 )\ 2007 PT wwT/2) ol wl/2) [

with 0 < ¢ < 5/6 +/73/6, and define Xg = Zle XS(Z). We first show that Xs is a feasible solution for our

primal optimisation problem. We have

I 4P'vl'vlTPT —2PvlvlT 2P'ul'vlT . [2Pv; 2Pv,
c c
A* Xg = 1 E —2vvf PT vl —vo] | = 1 E —v; —v; =0,
=1\ 2vp0] PT —vvf vl =1\ v;

and since Xéo) = 5(Iza, I24, T24),

L L
Xe + XS(O) _ 1 I+ CP(LZ:l:I ’Ul’vlT)PT _CP(ZZ:LI vlvlT)
2 —c(32, v )P Lo+ § 355, vvf

(Id +cP(XL, v )PT +eP(X, vl”f)) (Id +E o]~ v ))

+e(C L v )PT Lo+ S vl DRI FED St

It remains to show that Xg + Xéo) =s 0. Now, as for the first component of Xg + XS(O), observe that the
bottom-right block

L
(&
Id+1;”l”? 507

and it is invertible due to the fact that ||c Zlel vl /4]]2 < ¢/4 < 1, since the v;’s are orthonormal. The

inverse is

L
Cc
e i5e)

-1

_ (Id— ({;éwf»l ~y e (9), <évw?)k

k=0
oo k oo
~te S (§) (Dot ) s (ot ) S ()
k=1 =1 =1 k=1

L L
1 c
=1 o] | (—— 1) =IL- S vl
“t <1—1 vlvl) <1+c/4 ) ¢ P v

where the fourth equality comes from the fact that Zle vv] is idempotent again by the orthonormality of

the v;’s. Hence, the first component of Xg + XS(O) is positive semi-definite if and only if

L L L L
c
I;+ cP < E vlvlT> PT = 2p < E 'ulvlT> (Id “Ire E 'uyuf) ( E vl'vlT> pPT,
=1 1=1

=1 =1
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which is equivalent to

4¢? L 4¢? = ’
Z T T _ Z T T
Idt<4+c_c>P<l_lvlvl>P _<4+c_C)P< vlvl) s

2
which is satisfied if and only if 4¢2/(4 + ¢) — ¢ < 1, due to the fact that |[P (Zf:1 'vlvlT) PT|y =

|P (Zle vlvf) |2 < 1 again by orthonormality. This implies that the first component of Xg -+ XS(O) =g is
PSD if and only if 0 < ¢ < 5/64+/73/6, and of course the same is true for the second component of Xg +XS(O).

As for the third component, using an analogous idea, it is easy to show that it is positive semi-definite if
and only if

I; = ¢ ¢ ZL:’U’UT
1=\41c 4 - o

which is satisfied if and only if 0 < ¢ < 4. Summing up, this shows that Xg is feasible for 0 < ¢ < 5/6-++/73/6,

and leads to

L QPUZ Id P -P 2P’Ul
&
R(ES) Z —ﬁ —U; P Id ﬂjd —U;
=\ vy —PT3I; Iq4 vy
L
c 1-p c 1-3
B () 56
d
c 9,9 1—0 3 9,9 1—0
=37 Ul(P)—> > (Z(P) — ]
since 5/6 +/73/6 > 9/4. O
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Appendices

Appendix A contains further properties of our measure of incompatibility R that were not investigated
in the main body of the text. Appendix B contains another oracle test based on a different measure of
incompatibility, which acts on covariance matrices normalised in such a way to have fixed scale. Appendix
C contains auxiliary results in Semi-definite Programming, while classical tail bounds are contained in

Appendix D.

Appendix A Further properties of R(-)

We explore the properties of R(-) in the cycle example. In particular, we provide explicit expression in
simple cases, we discuss the meaning of maximal incompatibility and we prove a result showing that R()
is bounded below by the maxima of suitable linear functions if g, is not too singular. Here we write

s, = (Bq1,2), s Xqa,1}) for a collection of 2 x 2 correlation matrices with

1 p;
Yjj+1 = aE
pj 1

Our next result shows that singular matrices can be removed from Xg, when d > 4, without affecting the

value of R(-), reducing the length of the cycle.

Proposition 18. Fizd >3 and k > 1. Let Xg,,, be a (d+ k)-cycle with correlations (p{1,2}, - - -, P{d+k,1})
such that |pj 41| = 1 for all j € {d+1,---,d + k} and let Xs, represent a d-cycle with correlations

(Pg1,2} -+ -+ PLay) such that pj i1 = pj 1, forall j € [d—1] and

d+k
pay = paarr if I pjj =1
j=d+1
d+k
Py = —padrr if I1 pjj=-1
j=d+1

Then we have R(Xs,,,) = R(3s,).

Proof of Proposition 18. We will prove the result using the dual characterisation, which allows expressing
R(Xs,) as

1
1- Esup{tr(E) 1N € P, B = = Zqa, Ts, — A =5, 0}

Suppose that H?IZH pjj+1 = 1. We will show that R(3g,,,) = R(Xs,) by proving both R(Xs,,,) > R(3s,)
and R(Xs,,,) < R(Xs,). As for the first of these, for every ¥ optimal for ¥, ,, , we will show that ¥ = ¥4
is feasible for ¥s,. Now, X > 0 since Y- 0, and X1 = ... = X4 by definition of Y. As for s, —As, X s 0,
observe that ¥s, contains exactly the first d matrices in Xg,, but Sy contains just d — 1 patterns of Xg,_, .
This is due to the fact that Sy has {d, 1} in place of {d, d+ 1}, which prevents us from employing Proposition
6 (ii). Nonetheless, observe that il,d = id’d+1, due to the fact that 2j7j+1 = pj7j+1f)11 = 4%, for all
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je{d+1,...,d+k}. Indeed, Sg,,, — As,, > =s,,, 0 implies that

1 +1 . ~211 Zz’j+1 t 0
+1 1 Ej7j+1 Y

forall j € {d+1,...,d+ k}, which can be satisfied if and only if ijd'_’_l =43 = pj,j_Hill, since we must
also have |ij7j+1\ < 343 in order to have & = 0. The fact that i]‘J'J'_l = pj7j+1§~]11 forall j € {d+1,...,d+k}
implies that Var(X;4q — f]j+17j+2Xj+2) =0, forall j € {d,---,d+k — 1}, since Angi is compatible. By
induction, this gives Var(Xg11 — Hd+k im_HXl) = 0 by which

j=d+1
> I 5 LI >
Ld = o dd+1 = d,d+1 = 24d,d+1-
1 [T pij+1
j=d+1 j=d+1

Since 217(1 = id7d+1, we know that g, , — A§d+kf] =Sq4, 0 implies that ¥s, — As, ¥ =5 0.

To show the reverse inequality, consider an optimal 3 for s, coming from the dual formulation above,

and define
«._ (% B
S \BT U’
where
Uin - U
U::EH :
Ugr - Ukk

is such that U = UT, U;; = 1 for i € [k], Ui ix1 = patidris1 for i € [k — 1], Uy = Uy is either +1 or —1 to
make this (k — 1)-cycle completable, and the other entries are again +1 or —1 to make the cycle consistent;

and
By -+ DBig

BT .=
Byi -+ Bia
is such that B;; = 1, - Uy for i € [k],j € [d]. If such a ¥ is feasible for s, , then the result would follow
from the fact that R(Zs,,,) < 1—tr(X)/(d+k) = 1-31; = R(Zs,). The condition Xg,,, — As,, > =s,., 0
is implied by Ys, — AY >g5, 0, which is satisfied by hypothesis, and (1 — ¥11)¥; ;413 = 0 for i € {d +
1,---,d+k — 1}, which is again satisfied since X1 € [0,1] and Y141y = 0. Moreover, being a symmetric
block matrix, ¥ is positive semi-definite if and only if ¥ > 0, which is true by hypothesis, U — BTXTB > 0,
and (I —YX1)B = 0, where X is the Moore-Penrose inverse of .. As for the first of these last two conditions,
observe that the (k, h)-th entry of BTXTB is given by

(BTSIB)p, = Ut X788, Uy = U U 27818 = Uy 2788,
where X; is the first column of ¥. What is left to prove is to check that ElTZTZl = tr(ElTETEl) = Y11 and,

to this aim, we will use the limit characterisation of the pseudoinverse (see pag. 19 in Albert (1972)), which

72



allows writing > as limgs_yo ZT(EET + 521)_1. With this in mind, and calling \; the eigenvalues of X, and

v; the associated orthonormal eigenvectors,

tr(2Teie)) = (2T 2T) = tr (%in% et + 621)—1212{>
—

6—0 12 02

d
= lim tr (227 + 6*1) 7%, 2787 = lim tr (Z v; vT212T2T>

=1

: 1 T T T T
:}%th V;U; Y12 2 _hmz)\2+52 'vjv V;v; 212)

d

by
Z +62 [lv; UTEle = hm Z /\2 5 lv;v; Z)\ vﬂvj||2
j=1
d 3
Z 152 ||’U11’UZ||2 - Z/\ vzl =Y.

= i=1

The other condition can be checked easily using again the limit characterisation of %! and the spectral
decomposition of . This concludes the proof for the case Hjis 41 P5j+1 = +1. On the other hand, if
H]d+d+1 pjj+1 = —1, R(Zs,,,) > R(Zs,) follows after noticing that, if ¥ is optimal for Xs,,,, we must have
Yadi1 = —Xa1. As for R(¥s,.,) < R(3s,), the proof follows the exact same line as the one above, with
the only exception that B;; should now be defined as —Xq; - U;; for i € [k], 5 € [d]. O

This reduction applies when the correlations associated to an edge belonging to the path from node d+ 1
to node 1 are either +1 or —1. In this setting, we are allowed to identify node 1 with node d + 1 in such a
way that the incompatibility measure of the d-cycle g, is the same as the one of the original (d + k)-cycle
Ys,..- This is to be expected, as pj;j41 = &1 means that variables j and j + 1 can be identified, up to
change in scale, and the dimensionality of the problem can be reduced. Clearly, this result is invariant under
cyclic permutations of the nodes’ labels.

We now give some explicit expressions for R(-) in special cases and discuss a case for which R(Xs) =
1, meaning that YXg is maximally incompatible. It will be convenient for the rest of the subsection to

reparametrise the correlations as p; = cos#;, with 6; € [0, 7].

Example 4. If there are 01,05 € [0, 7] such that 6, > 02 and

1 cos 0 1 cos 0o 1 1
ZS;; = ) ) 9
cos 0 1 cos 05 1 1 1

then R(Xs,) = (cosfy — cosb1)/2. In particular, setting 02 = 0 we see that if

1 cos 0 1 1 1 1
283 = 5 P )
cos 0 1 1 1 1 1

then R(Xs,) = sin®(61/2). Moreover, assuming without loss of generality that at most one correlation is
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negative, as justified in Proposition 19 below, for a general 3-cycle Ys, we have R(Xs,) = 1 if and only if

=66

These results can be extended to a general d using Proposition 18.

Proof of Example 4. Start by considering a 3-cycle. In the first case, the optimal ¥ of the dual representation
1
R(ng) =1- E sup{tr(Z) NS P*, ES — AY ES 0, 211 = 222 = 233}

must be of the form

> 8 >
< > 8
> < >

for some A € [0,1] and some z,y € [—A, A] in order to satisfy 3g — AX »g 0. Furthermore, since det(X) =
—A(x —y)?, we must have x = y in order to satisfy ¥ = 0. It follows that

R(Xs,) =1 —sup{A € [0,1] : 1 — A > max{|x — p1], |z — p2|}, with x € [-\, ]}
= inf{e € [0,1] : € > max{|z — p1|, |z — p2|},e <1 — |z|}

= inf{max{|z — 1|, [& — pa|} € [0, 1] : max{|z — pr, [& = pa} <1 —[z[}

which is equal to (cosfy — cosfy)/2. As for the second case with d = 3, setting p = 1 in the above we see

that if
1 1 1 1 1
283: P ) ) )
o 1)\ 1)\

then R(Xs,) = (1 — p1)/2 = (1 — cos#;)/2 = sin*(#; /2). Plugging in §; = 7 gives the sufficiency part of the
second statement. As for the necessity part, Proposition 11 (i) implies that it is necessary that |p;| = 1 for
all ¢ € [d] for R to be 1. O

Related to the last claim of Example 4, another important property for a d-cycle is that we can always
assume without loss of generality that at most one 6; is larger than /2, which is equivalent to having at

most one negative p;, without changing the value of R(-). This is shown in the following result.

Proposition 19. Consider the d-cycle with Sq = {{1,2},...,{d,1}} and Xs, := (31,2}, , Xqa,1}), where
the correlations p; = cos; are uniquely determined by 0 < 61,...,0q < w. Then, there exists another
sequence of angles 0 < 01, ...,0, < 7 with at most one 8; larger than /2 such that the corresponding d-cycle
S, o= (Spaays o » Sqay) satisfies R(Xs,) = R(3g,).

Proof of Proposition 19. It is easy to see that we can always transform the original d-cycle into a new one
where at most cos 6, is negative by changing some X into —X;. To see why, let § = (61,...,64) be such
that 6, = 1{p; j+1 > 0}, and observe that, if §;_; = 0 and 6; = 1, changing the sign of X; corresponds to
switching 0;_; with 6;. Hence, it is easy to see that we can switch signs to some variables in order to reach a

configuration of € in which all the zeros are at the beginning, and all the ones at the end. It is now sufficient
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to couple the zeros starting from the end, and switch sign to make it both one, to get 6 = (61,14—1), where
61 = +1 if the number of original p; ;11 is even, and zero otherwise. As a by-product, this also shows that
we can always assume without loss of generality that at most cos#; is negative. Now, let Xg , be this new
d-cycle: what we want to show is that R(Xs,) = R(Xg,), and, in order to do so, we will show that we
can construct feasible Xs and X for primal and dual problems of g , which lead to the same target values,
using the optimal Xs and ¥ for Xs,. Starting from the dual problem, let M be a diagonal matrix such that
M;; = =1 if X; was replaced with —X;, and +1 otherwise. Then, it is easy to see Y = MYM has the
same trace as %, and it is feasible for Xg ., indeed, ¥ = 0 since it has the same spectrum as 3, being similar

matrices, and X5, — AY =g, 0 because for every j € [d] we have

S = = Lopi) [ 2 Miaw
n ™ pj 1 Yjit1 Tjtrj41

_ 1 MjiMjy1 4105\ X Mj i Mjt1,j4+1%5, 541
M;j i Mjt1541p; 1 M Mjt1,541%5, 541 Y1541

_ 1 =%, MjiMjrgaes = %5)\
M; iMji1v1(p; — 25) 1 =%+ B

since |M; ;M1 j41(p; — Z5)| = |p; — Ej] <1—-%;,; =1 — ;41 41, due to the fact that ¥ is feasible for
Ys. As for the primal problem, it is sufficient to define Xs = AM - Xg - AM, where - acts pointwise, which

essentially consists in changing the signs of the off-diagonal entries of Xgs according to M. Let
Tjil Tja2 c Tjar Ty Tj11 Mj,jMji1,5+1%5,12
X+ = and Xgj ity = | . = ;
Tjo1 Tj22 Tjo1 Tj22 M; i Mjy1,541%5,21 Tj,22

for all j € [d]. Tt is easy to show that X is feasible, and clearly leads to (XS, ig)g = (X, Xg)s since, for a

generic pattern j € [d], we have

o S ZTji Tjaz2 1 pj
_ Js Js J
(X1 g = (| - ~ . )
Tj21  Tj22 p; 1
.y Tj11 M; ;M1 41752 1 M; i M1 j4+1p5 >
- )
MjJMjJrl,jJrlijl Zj,22 Mj,ij+1,j+1pj 1
_ 2 2 2 2
= wju1 w0 + My Miyy w00 + MMy 50250105

= Tj11 + Tj22 + Tj1205 + Tj21p;5

ZTji1 Tj12 1 pj
:< J 5 >:<X »’.+17Z.’,+1 >
Tj21  Tj22 p; 1 {5,3+1}> &={j,j+1}

This completes the proof. O

The last result we present on the d-cycle gives an explicit lower bound for R in the case that Xg, is

incompatible. This is related to the results of Barrett et al. (1993) characterising exactly when the partial
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correlation matrix

1 cos 01 * ... cosby
cos 01 1 cosfy --- *
Ypartial = * cos 6y 1 . *
cos 0y * * e 1

has a positive semi-definite completion. Barrett et al. (1993) shows that this is the case if and only if

S0, <(K|-Dr+ > 0; (41)
JeEK JEK
for all K C [d] with |K| odd. Remarkably, this shows that the parametrisation p; j;1 = cosf; allows us to
characterise the feasibility of positive semi-definite matrix completion in terms of a finite number of linear

inequalities. If we know that 0 < 83 < 60;_1 < ... < 6; <7 then this reduces to checking

k d
Zt%‘ﬂ(k‘—l)ﬂ'-F Z 9]‘
j=1

j=k+1

for all odd k € [d]. Furthermore, if 0 < 64,...,604 < m with at most one 6; larger than 7/2, then X440 has

a positive semi-definite completion if and only if

Proposition 19 shows that we can always work under this setting, so that the problem of whether ¥4, tia
has a PSD completion or not is determined by one condition only, namely 2max;e(q 0; < Z?:l 0;. This is
a novel contribution per se, since it is not present in Barrett et al. (1993).

We now show that, provided not too many of our input matrices are close to being singular, R(Xs,) can
be bounded below by a finite maximum of linear functionals that is zero if and only if X¥g, is compatible.
This lower bound constitutes another sanity check for our measure R(-), since the quantities appearing in
the lower bound are a natural quantitive version of the qualitative conditions given in Barrett et al. (1993)

to check whether the partial matrix ¥,4,401 defined above admits a PSD completion.

Proposition 20. Consider the d-cycle with S =Sy = {{1,2},...,{d,1}} and suppose that

1 cos 0;
iy = cos b, 1 '
J

Assume further that there exist ¢ > 0 and two indices k,j € [d] such that 1 — p? > ¢, 1—p2 >c, so that

Y41y and X py1y are bounded away from singularity. Then, whenever X, is incompatible, we have

R(Xg,) = ¢ e (Z 0; — (IK| - D)m = Y 6’@),

K| odd €K i€EK¢®
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where ¢ > 0 depends only on c.
Proof of Proposition 20. We will prove the statement by induction, with base cases d = 3, and d = 4:

d = 3 Suppose without loss of generality that 81,05 are bounded away from singularity. Also, assume without
loss of generality that 65,03 < 7/2, using Proposition 19, so that incompatibility means 6; > 65 + 0.
We will prove the base case
R(Xs,) 2 02 — 01 — 05.

by showing that

01 — 65 — 03 cos Oy — cos b1
B%s) 2 —5—5 2 ’
and since cos 6z —cos 61 2. 01 — 65 being bounded away from singularity, the result would follow. Now,
fix arbitrary 60,0y satisfying the hypothesis of the statement, and suppose 0; — 5 < 7/2. Observe
that for 5 = 0 and 03 = 6; — 05 the lower bound is satisfied with equality sign due to Example 3 and

Barrett’s characterisation (41), respectively. Now, call

0 — 0,6y
C '

and observe that the thesis is equivalent to
* h
A :1—R(ng)§1—§((30592—00891)7

Now, thanks to the KKT representation of the optimal A*, in order to have A* > 1—h(cosfy —cosf;)/2

we must have

. L cos 01 +h(cos @2 —cos 01)/2
cos by < cos ¥ < 1—h(cos 02 —cos 61)/2

* cos O3 —h(cos O —cos 01)/2
cos 0y > cos P > 1—h(cosO2—cos01)/2

* cos O3 —h(cos 02 —cos 01)/2
cos 93 > Cosp3 > 1—h(cosfz—cos01)/2

with ¢ = @5 + ¢} due to Proposition 11 (iii). We see numerically that this system of inequalities
can never be satisfied for 83 € (0,0, — 62). Finally, taking into account all the possible ways in
which a generic 3-cycle can be reduced to a 3-cycle with at most one negative correlation, as stated in

Proposition 19, we get

R(Egs) z max(91 — 92 —93,02 — 01 — 03,03 —01 —92791 +92 +93 —27’(’)

d = 4 Suppose without loss of generality that one of the two angles bounded away from singularity is 61,
with 61 > 05 4 03 + 04, and 6, 03,604 € [0,7/2]. As shown in Figure 15, there are two possible cases:
the first one (on the left) is when the two angles bounded away from singularity are adjacent, and the

second one (on the right) when they are opposite to each other. We will use the following lemma:
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Lemma 21. Consider the d-cycle with Sq = {{1,2},...,{d,1}} and X5, := (X123, -+ , E{a,13). Then,
for every optimal X of the dual problem, i.e. X5, = \*AX + (1 — \*)Xg , and for every d > 4,

R(ESd) > R(B§d71(¢)) + R(ES:; (d)))a V(i) € [)\*217(1,1 - R, A*Zl,dfl + R]v

where Bs, () = (Eq12}, > Xfd—2,d—1}> 2{d-1,1}(8)), Es,(9) = (Zga—1,ay> a1} Xga—1,13(4)) and
Yia—1,13(@) is the 2 x 2 correlation matriz with off-diagonal entries equal to ¢.

Proof of Lemma 21. Suppose without loss of generality that 65 > 041, and that 6; = max;¢[q) 0;, with
O2,...,04 <7/2. Let R = R(Xs,), and let

S, = (1 — R)AS + RS, = A AY + (1 — A%,

be a (not necessarily unique) dual representation of Xs,, and denote by ¥q 4—1 the entry (1,d — 1) of
3. We will prove the statement in three steps:

1. R(Bs, ,(AX1,q-1+ R)) < R(Zs,) and R(Es,(A*E14-1 + R)) =0,
2. R(E§3 ()\*217(1_1 — R)) < R(st) and R(BSd,l()\*El,d—l - R)) = 0,
3. 2(¢) :== R(Bs,_,(#)) + R(Es,(¢)) is convex for all ¢ € [-1,1].

1. As for the fact that R(Es, (A*X1,4—1 + R)) = 0 observe that

1 NEia-1+R  pa
A*Es,(NY1qg1+R)—I3= [ M*E 41+ R 1 pi-1 | =
Pd Pd—1 1
1 NEia1+ R NSia+ R
N S | NSy 14+ R
NSia+ R ANSqa+R 1
1 Y141 Zi4 1 11
=M [Ze 1 Seaa|+0-M)1 1 1],
Sia Sao1a 1 11 1

)

where the second equality follows from the optimal choice of signs given in Proposition 11 (iii)
under the hypothesis 01 = max;¢[q) 0;, with 02, ...,04 < /2. This implies R(Es,(A\*X14-1+R)) =
0 since A*Eg, (A*X1 g—1 + R) — I3, which is the 3 x 3 correlation matrix whose 2 x 2 marginals
are precisely those in Eg, (A*¥1 4-1 + R), is PSD being the sum of two PSD matrices. As for
R(Bs,_,(A*¥1,4-1 + R)) < R(Xs, ), observe that, if ¥, = \*AX + (1 — A*)Xg , then

Bs, ,(A*¥14-1+R) = NAXj_q) + (1 = A")X3,

d—1

where
5., = Sy Slac1a—2y 1,13),
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which is maximally incompatible. To see why, observe that E’Sd is maximally incompatible by
definition of the dual representation, and since 61 = max;c[q) 0;, with 02, ..., 0q < 7/2, Proposition
11 (iii) ensures that

25, = (=117, 41,17, ..., +1,1]),

which leads to

S, = (1213, 41215, ..., +1513).
This shows that ¥j_g) is feasible for Bs, ,(A\*X; 4-1 + R), and implies that R(Bs,_, (A\*¥1,4-1 +
R)) < R(Xs,).

. The arguments in the proof above can be followed mutatis mutandis to show that R(Es, (A\*X1 g—1—
R)) < R(3s,) and R(Bs, ,(A\*¥1,4-1 — R)) =0.

. In order to show that R(Xs,) > R(Bs,_,(¢)) + R(Es,(¢)),V¢ € I, we will make use of the fact

that R is convex and continuous, as stated in Proposition 6 (i) (ii), i.e.
R (uzg) . u)zé”) < uR (zg)) +(1- R (zg)) , for all e [0,1].
Now, define
E((b) = R(BSd—l((b)) + R(ESS((b))? for all ¢ el= [_L 1]
It is easy to see that Z(¢) is convex in I since, for all ¢1, ¢o € I, for all p € [0, 1],
E(uor + (1 — p)d2) = R(Bs,_, (no1 + (1 — p)d2) + R(Es, (1 + (1 — p1)d2))
= R(MBSd—1(¢1) + (1 - M)Bsd—1(¢2)) + R(/’[’ESB (¢1) + (1 - M)ES3 (¢2))

< pR(Bs,_,(¢1)) + (1 = ) R(Bs,_, (62)) + nR(Es, (¢1)) + (1 — ) R(Eg, (42))
= nE(¢1) + (1 = p)=(2)-

This, implies that, for all p € [0,1],

R> IUR(ESd71()‘*Zl,d*1 - R)) + (1 - M)R(BSd71()‘*ELd*1 - R))
PENE1 -1 —R)+ (1 = p)EN'E14-1+R) > ENE19-1 +1—2uR)
1 2(¢) = R(Bs,_,(9)) + R(Es, (¢)),

for all ¢ € [A\*%q g—1 — R, A\*E1 4g—1 + R}, as claimed. For general angles (61, ..., 6,), it is sufficient
to perform the transformation outlined in Proposition 19, find ¢ and I as above, and perform the

inverse transformation.

As we can see from Figure 14, this reduction corresponds to adding an edge in correspondence to
{1,d — 1}, so that the d-cycle Xg, is divided into two smaller cycles, Bs,(¢) of dimension d — 1, and
Es,(¢) of dimension 3. The result ensures the possibility of adding a correlation py 4—1 = ¢ for the

edge {1,d — 1} to make Bs,(¢) and Es,(¢) maximally compatible, or better, at least as compatible as
the original d-cycle, since R(Xs,) > R(Bs,(¢)) + R(Es,()). O

79



Figure 14: Tlustration of Proposition 21. We split the original d-cycle into two smaller cycles, adding the extra edge
{1,d — 1} with associated correlation ¢. We end up with a (d — 1)-cycle Bs, ,(¢) in yellow, and a 3-cycle Es,(¢) in
blue, such that R(Zs,) > R(Bs,_,(#)) + R(Es;(¢)) for all ¢ € [\*E1,4-1 — R, A\"E1,4-1 + R].

In the first case, suppose we add an edge between (2,4) with correlation cos(f3 + 64). We first show
that this is a valid choice of ¢ to invoke Proposition 21. In this regard, observe that R(FEs,(¢)) =0
for all ¢ € [cos(04—1 + 04), cos(Bq—1 — B4)], hence, since we proved R(Es, ,(A*¥1 4-1 + R)) =0 in the
proof of the lemma above, we must have cos(0g_1+0q) < A*¥1 4—1 + R. Similarly, cos(6; — 25;22 0;) >
A*%1 4—1 — R. This, together with the fact that cos(f; — Zf;f 0;) < cos(04—1+04) since 67 > 2?22 0;,
allows concluding that A*¥q 4_1 — R < cos(6h — Z?:_QQ 6;) < cos(8g—1 +64) < ANXq49-1 + R. Now,
Proposition 21 ensures that
R(01,02,05,04) > R(01,02,03+ 04),

and since 61, 6> are bounded away from singularity, we can employ the lower bound we found for d = 3,

and conclude
R(Ss,) > 01 — 03 — (05 + 04) cos Oy — cos by

- 601 — 05 2 ’

which gives the desired result. In the second case, we can proceed in the same way as before, and get

< 01 — 03 — (05 + 04) cos(fs + 04) — cos Oy

B(%s,) 2 61 — (63 + 04) 2

Now, if sin?(f5 + 64) > ¢ we are done, otherwise, #; must be bounded away from singularity. Indeed,
since 03,0, € [0,7/2], and sin?(f3) > ¢ by hypothesis, in order to have sin?(f3 + 6;) < ¢ we must
have sin?6; > 1 — ¢. Now, since we can assume that ¢ is small enough, say ¢ < 1/2, we conclude
sin?@, > 1 — ¢ > ¢. This implies that 6, is bounded away from singularity, and since it is adjacent to

01, we can proceed as in the first case to get the desired result.
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0 O;+0, |03 0 O34 6, |03

4 04 3 4 04 3

Figure 15: The two possible configurations of the two angles bounded away from singularity when d = 4. On the
left, the two angles are adjacent, while on the right they are opposite to each other.

d > 5 Suppose again without loss of generality that ¢; is bounded away from singularity, and call 6; the
other one. Now, since d > 5, we can find k # 1, j such that 0y, 851 are not necessarily assumed to be

bounded away from singularity. Then, proceeding as before, thanks to Proposition 21, we have
R(ela e aad) Z R(eh ey 9.’6—17 974) + 0/@-‘1—17 97€+2a ey 9d)7
so that the induction step gives immediately that

R(Ql,...,ed) > R(Gl,...,ek_l,ﬂk +9k+1a9k+2;~--,0d)

d
> | 60— (Ok + Opy1) — Z 0, | = (91292'),
i—2

i£1,5,k,k+1

where ¢’ is a constant depending on ¢ only. Finally, taking into account all the possible ways in
which a generic d-cycle can be reduced to a d-cycle with at most one negative correlation, as stated in

Proposition 19, we get

R(%s,) > ¢ max (Z 0; — (K| - D)r— > 6%) :

e K iceKe
|K| odd 1€ 1€

where ¢ > 0 depends only on c.

O
First, observe that this lower bound reduces to
d
¢ <91 Y a-) ,
=2 +
in the case that 6; = max;ecq 0; and 02, ...,0q < m/2, which we have already argued that we may assume

without loss of generality. Furthermore, as a sanity check, the simple explicit expressions found in Example
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3, in which we have seen that

1 0 1 0 1 1 1 1
R st ) s , e = (cosfy — cosb1)/2,
cos 01 1 cos 05 1 1 1 1 1

is in accordance with Proposition 20, since cos 3 —cos 6y 2. 61 —02 when 61, 02 are bounded away from {0, 7}.

We now analyse two further examples, where the missingness patterns S is more complex. These examples
are interesting per se, but we have decided not to include them in the main body because they would have
disrupted the flow of the presentation. We start from the case where we observe all possible patterns of

cardinality d — 1, and nothing else.

Example 5. Consider the set of patterns S = {S_1),---,S(—q)}, with d > 2, where S_; = {1,...,i —

1,i4+1,...,d}. We show how R(Xg) can be lower-bounded by the mazimal inconsistency, or, more precisely,
1 (k) _ (W) _.
R(¥s) 2 5 max max |pij” — py’| =: 6,
k,h#i,j

where pgf) is the correlation between X; and X for the pattern S(_yy, for k € [d] \ {4, j}.

Proof of Example 5. In order to prove the statement, suppose the maximum is | pl(-?) — pgl)|7 and consider

Xs = dYs — X, where X{” = 1 (I4_1,...,Is_1) and

Ys=(0,..., Ay ,0,...,0, Ay ,0,...,0),
~~ —~

h k
with
[ D 60,0060 G
I 0 otherwise,
and

14 if (i,5) € {(,4), (G, 9)}
(A2);; = —1/4 it (4,5) € {(4,5), (4, 9)}
0 otherwise.

Then, provided Xg is feasible, we get precisely that

1 1 (k) _ (h)
R(Zs) 2 ——(Xs, Es)s = 5 max max ;" = pij' |-
k,h#i,j
All is left to prove is that Xg is indeed feasible: Xg + XS(O) = dYs =5 0, and A*Xg is diagonal with trace
zero, hence we can choose Y = —A*Xg € ) in the primal characterisation so that A*Xs+Y = O = 0.
O

Observe that the same is true in the case where we also have a complete case pattern, i.e. S =

{ld], S¢=1y,- -, S(—ay}, with d > 2, meaning that using the same strategy we can control R with the maximal
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inconsistency. Related to this, it would be interesting to know if there is a case in which the incompatibility
value © controls R(Xs) both from above and below, meaning that © fully characterises R(Xs). In this regard,

we have the following:

Example 6. Consider S = {S(_1),---,Say} and Xs = (lg—1,...,1a—1,A), where

1 /2 0 0
61/2 1 62/2 0

0 -+ 0 0 e1/2 1

with €; € [=1,1]. Then,
1
R(Xs) =0 = = max |¢].

2 ield—1]
Proof of Example 6. 1f we consider

1-0 /4 o .- 0 0 0

e/4 1-0 e/4 --- 0 0 0 0
M= c Rd’d,
0 €d—2/4 1-06 Ed_1/4 0
0 €g-1/4 1-0 0
0 o .- 0 0 0 1-0

if ¥ were feasible we would be able to conclude R(Es) = 4 max;e(q |€;| being
1
O > R(Xs) > O = - max |¢]|.

2 ield—1]

Allis left to prove is that X is feasible. First, X = 0 since it is diagonally dominant, being 1 —max;¢q |€;]/2 €
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[1/2,1] and ¢;/4 € [-1/4,1/4]. Finally, a generic element in g — AY is given by

maxie(q) |€i]/2 o1 /4 0 0 0
041/4 maX;e|d] |€i|/2 042/4 0 0
c Rd*l,d*l
0 0 0 ag-1/4 maxeq |e|/2

where o; € {#£e¢;,0}. This is again diagonally dominant since max;cq |€;/2 > |o|/4 + |oj41]/4 for all
j € [d — 1], by definition of the maximum. 0

This example is particularly important since it clearly shows that, in this case, testing compatibility is
at least as hard as testing consistency. Indeed, © is a pointwise measure of consistency, and equals 0 if and
only if Xg is consistent. Nonetheless, the equality R(Xs) = © holds for a very specific subclass of ¥g, while,
in general, there could be cases for which R(Xgs) > 0, while © = 0.

Example 7. Consider S = {[d —2]U{d —1},[d —2]U{d}}. Call S; and Ss the two patterns, respectively,

and suppose we observe the collection of correlation matrices given by s = (Xg,,Xs,). If we call

Y= (s,)|1d-2 — (Bs,)|[d—2

where (X, )|[a—2) is the restriction of X5, on the set [d — 2], for i € {1,2}, then
R(Zs) > 5[]
9= g
where || - ||« is the nuclear norm, also known as the Schatten-1 norm.

X  04-9 —X  04-2
Xo=1{{or o / \o7 0 ’
d—2 d—2

where X € R¥72472 and || X ||z < 1/2. Observe that this choice of Xg is feasible since A*Xg = O = 0, and

X410 04 ~X +1l,9 042
0 __ 2 2
XS+X§—<< or N or ) =s 0,

since || X |2 < 1/2. It follows that

Proof of Example 7. Define

1 1 = 1 =
R(¥s) 2 sup  ——(Xg,Xg)s = sup  —{X,%) = —[%].,
X=XT X=XT
I xl2<1/2 [ X[l2<1/2
where || - ||« is the nuclear norm and equality follows since the spectral norm and the nuclear norm are dual
with respect to the Frobenius inner product. O
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Appendix B Another test under trace normalisation

In the main body we were dealing with the incompatibility measure R, which acts on correlation matrices,
normalised in a such a way that diagonal elements are all equal to one. Nonetheless, other standardisations
are possible, and these lead to different compatibility measures. In this section, we will define another mea-

sure of compatibility R(-), study its properties, and use it to define a testing procedure. Similarly to Table
1 in the main body, refer to Table 2 for all the new algebraic definitions needed in this section.

Notation | Definition Meaning

tr: Ms — R | tr(Xs) = Z?Zl IS;|~* >ses, (Xs)j Generalisation of the trace such that, if 3g
is compatible, then tr(Xg) is equal to the
trace of the underlying true covariance ma-

trix
7? {ZeP*:tr(X) =d} Set of PSD matrices with fixed scale
Ps {¥s € P tr(Xs) =d} collections of PSD matrices with scale fixed
P {AY : ¥ e P} Same as P¢, but ¥ has fixed scale

Table 2: Table with all the definitions needed in Appendix B.

The linear operator tr satisfies the following:

Proposition 22. The following hold:
(i) If we define X§ € Mg by taking X2 to be the diagonal matriz with (X3);; = 1/|S;|, we have
tr(Xs) = (Xs, Xg)s
for all Xs € Ms.

(i1) Suppose that Xs is consistent, meaning that (Xs,);;» = (Xs,);;» whenever S1,Sy € S;;, and write
xpartial for the incomplete d x d matriz with (XP*¥al) .., = (Xg);; for any S € S;j. Then

&(XS) — tr(Xpartial) and <X§, YS>S _ <Xpartia1’ A*)/S>

for any Ys € Ms.

Proof of Proposition 22. Now for any Xg € Mg we see that

d
(Xe, XQ)s =D (Xs)j5(XQ);5 = Z IS;171) " 1gesy(Xs)j5 = tr(Xs),

SeSjes Ses

proving property (i). The first part of (ii) can be seen immediately from the definition of tr. For the second
part, write

d
(X5, Ye)s =) > (Xs)jy(Ya)jyr = Y (XP"50) 550y "1y jresy (V) = (XP70, A"Y5).
Sesjgres g 5es
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O

Now, suppose that Xg is such that tr(Xs) = d, where tr(Xs) = 2?21 IS;| 7t > ses, (Xs)jj, with S; =
{S€S:je S} and define

R(%s) := sup{—cll<XS, Ys)s : Xs + X§ =5 0, A* Xg = o}.
This new measure of incompatibility has the following dual representation:
Proposition 23. For Xg € 75g we have
R(Xs) = inf{e € [0,1] : g € (1 — )P + €Ps}.
Proof of Proposition 23. As in the proof of Proposition 5, the strategy is to write this optimisation problem
sup{—é(Xg, Ys)s: Xs+ Xé) s 0, A* X5 = 0} (42)
in standard SDP form, prove that the dual problem is precisely

1
1- g sup{tr(X) : ¥ € P*, Xg — A =5 0}, (43)

and then show that Slater’s condition is satisfied for the primal problem (42). Calling Y5 = X5 + Xg, we
have that

1
supy — —(Xs, Ss)s : Xg + X9 =5 0, A* X5 = 0
pi s

1 1
= SUP{_d<YszS>S +tg (X,%s)s : Ys = 0, A*Ys = Id}
(Ye)=d
=fr(3s)=

1
=1- dlnf{<YS7ZS>S : YS tg O,A*}/S -7 = Id, for some Z b O}

We write this optimisation problem in standard SDP form as follows: enumerate S as {Si,...,Sn}, and
define
Y, - 0 0
X = : ,
0 Ys,,
0 --- 0
so that (Ys, Xs)s = (X, C), where
S, 0 0
C:= :
0 ZS’"l
0 .- 0

86



As for the constraints, they are equivalent to X > 0 and (X, Ajj/> = 4;j, for 7,7’ € [d], with

Esygy =0 0
Ad = - : : ,
0 - Eg,;v 0
0 - 0 —Ey

where E;; = (ejef, + ej/ef)/Q is the symmetric matrix of the same dimension as Z with its only non-zero
entries being in the (j,j')-th and (j',j)-th positions, and where Eg ;;; = (esd-eg,j/ + eS,j/e£7j)/2 is the
symmetric matrix of the same dimension as Yg with its only non-zero entries being in the (j,j')-th and

(j', )-th positions of Yg. Then, the standard dual problem is
sup{ Z 5j’j/Y}7j/ :C — Z Y}J/Ajj/ = O}
7,5 €ld] J.3'€ld]

1
= sup{tr(Y) (s — §A (Y 4 YT) =50, (Y + YT) - 0}
= sup{tr(W) :Ys — AW =5 0, W = 0},

where we made the substitution W = (Y +Y7) /2 and used the fact that tr(W) = tr(Y)/2 + tr(Y7)/2 =
tr(Y). This shows that (43) is the dual problem of (42). As in the proof of Proposition 5, the result
follows upon noticing that the primal problem (42) is strictly feasible, since Y5 = X2 =g 0 is such that
A*Ys = I; =s I, which ensures that strong duality holds. O

As before, we can prove some properties for ]:2()

Proposition 24. The following hold:

(i) R is conver.

(ii) R is continuos.

(iii) If S C S and Xs C Sgr, then R(Xs) < d'R(Xg)/d, where d’ = card(Uses'S) and d = card(UgesS).
Proof of Proposition 24. (i) and (ii) are essentially the same as in Proposition 6. To prove (iii), let XS(U
be a feasible point of {Xs+ X2 =5 0, A*Xs = 0}, and define XS(,Z) = (Xg(l),O, -+, 0), where we added a
compatible zero matrix O for every element in S®NS’. Then, X'S(,Q) + X9 =g 0 is equivalent to Xél) +X2 =50
and Xg,\S =sn\s 0, which are satisfied, while Ag,f(s(?) = Agf(él) = 0, since )N(él) is feasible. Hence, XS(?) is
feasible for Zg), and the thesis follows from the fact that the normalising constant changes from 1/d to

1/d’. Observe that the dual representation given by Proposition 23 allows proving the statement differently.
Indeed, let X =0 € R?4" be such that tr(X) = d’ and

Yo = (1 - N)Ag X + Ny,
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where S =g 0 and \ = R(Xg/). Then, since S C §', we can automatically write also Xg in this form as
Ys = (1 - )\/)Asz + )\/ig,

where X results from deleting all rows and columns of X’ associated to every element i ¢ Uges'S \ UgesS,
and is ensured to be non-negative definite by Cauchy interlacing theorem. Then, calling o7 the diagonal
elements of (1 — \)X/,

D, 1 2 1 2
R(Zs) <1- > of<1-+ > ol —(d —d)

1€UgesS iE[d’]

—1- é (a1~ B(S) ~ (@ —d)) = S R(Ss).

We conclude the analysis of R showing that it can be highly complex even for very simple settings.

1

2 3

Figure 16: Graph associated to the pattern S = {{1,2},{1, 3}}.

Example 8. Consider S = {{1,2},{1,3}}, which is associated to the graph in Figure 16, and suppose

without loss of generality that we observe

2 =2 =~

B 07 P120102 B 07 P130102
Yoy = v Ypey = X 2
P120102 g2 P120102 o3

with 2 > o?. Let 0,¢ € [0,7/2] be such that cos® = o,/d1 and cos ¢ = |p13|. Then we have
1 1 P
1, . 1, .
R(3s) = E(U% —ot)+ gU?Q, sin? (6 — ¢)+)-

Proof of Example 8. We prove this statement by giving an optimal choice of Xg for the primal problem and

an optimal choice of ¥ for the dual problem. It turns out that the optimal Xg is of the form

== {00 00)

for A € R and v € R%. Given v € R?, we take A = 1/2+ 3v?/(1 + 3v3) as this is the maximal value for which
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Xs + XS0 =s 0. It is clear that A* Xg > 0, so this choice of A always leads to a feasible Xs. When ¢ > 0 we
will simply take A = 1/2 and v = 0 to recover the same feasible solution as for R and the simple lower bound
R(Xg) > (1/6)(6% — 0%). When ¢ = 0 (so that |p13]| = 1) we take v = u(03/51, —sgn(p13)) with u — oo to
see that

R(e) > sup( g+ B )01 - o) = (10032 - o)+ (13301 — o350,

which matches our claim. When 6 > ¢ > 0 we choose

M (03/71) cos(f — @)
cos(#) sin(p) \ —sgn(pis)cos(d) |

)qln(e @) cos(0—¢) and

Using trigonometric identities, it can be seen that A = 1/2 + (03 /5 S (6) cos(8)

R(3g) > —(1/3)(Xs, Xs)s
= (1/3){ 67 sin®(0) — vi55 — 201025103 cos(¢) sgn(p13) — v303 }
L gb {cos 0 — ¢)sin(f) sin(¢p) — cos?(0 — @)

= %6% sin?(0) + 393
+ 2cos(f — ¢) cos(6) cos(¢) — cos®(6) }

cos(0) sin(¢

1 1
60% sin?(0) + 5032, sin?(0 — ¢).

We have now provided the required lower bound in all cases, and turn to the upper bound through the dual
problem. Start first with the case that ¢ > 6. Then 61|p13] < 01 so that

U% P120102 0103 1p13
— 2 J1p13
Y= P120102 o3 0203012 p
0103 g1 913 T203p12 1/)13 032,

is a valid covariance matrix. We have

52 —-02 0
ESAE_<02,27<10 ! O)) >s 0

so Y is feasible. Thus, when ¢ > 6, we have

1 =2 2 2 2 1
R(%5) € 1— () = it g"l + 22 ;03 - g(ol+ o3 +0d) = 5 (61 o)

as required. When ¢ < 6 we consider

of P120102 o103 cos(6 — @) sgn(p13)
Y= p120102 o3 o203p12 cos(f — @) sgn(pis) |,
o103 cos(0 — @) sgn(p1s) o203p12 cos(d — @) sgn(p13) 03 cos?( — ¢)

which is a covariance matrix so 3 = 0. Clearly (AE){LQ} = X{1,2)- It follows from trigonometric identities
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that

F103p13 — 0103 cos(0 — @) sgn(p13) = F1038gn(p13){cos(¢) — cos(6) cos(d — @)}
= G103 sgn(p13) sin(f) sin(f — @)

so that

&2 sin?(6 0103 sgn sin(@) sin(6 —
Yz — (AY)psy = ( 1 (0) 103 5gn(p13) sin(6) sin( ¢)>’

G103 sgn(p13) sin(f) sin(f — ¢) o3 sin*(0 — ¢)

which is a covariance matrix so is positive semi-definite. Thus ¥ is feasible and when ¢ < 6 we have
1 ~2 2 2 2
R(Ss) < 1-str(2) = g 7 % ; %

1 . 1 .
= 6(0% —o7) + gsmz(H* ?),

- é{of + 03 + 05 cos”(0 — 9)}

as required. O

Now, the goal of this subsection is to develop an analogous oracle test for the measure R, under the usual

hypothesis of ¥g =g cls, with ¢ > 0. In this case, the maximum is attained in the set
He = {Xs+ X =5 0,A* X5 = 0, (Xs + X2, cls)s < d},

hence the only difference with F. is that A*Xg +Y = 0 for some Y € ) is substituted by A*Xg = 0.
Hence, since in the previous subsection we discarded the condition A*Xg + Y > 0 for some Y € ), if we

now discard A*Xg > 0, all the previous steps remain valid for controlling Pg, {R(is) > Ca}, so that we

can again reduce this problem to bounding maxgcg ||f]5 — Ysll2, with the only difference that now Xg is
related to the corresponding covariance matrix through a different normalisation. Repeating the same steps
that lead to the proof of Theorem 7, we can prove the following result, which gives the right separation to

test compatibility based on R.

Proposition 25. Suppose we observe Xg1,...,Xgng S Ps,VS € S independently, where each Ps is
v-subgaussian with mean ps and v > 1, with the collection of population covariance matrices Xs satisfying
tr(Xs) = d, and Xg =5 cls, for a given ¢ > 0. Let ig be the collection of sample covariance matriz associated
to each pattern S € S, ng the collection of sample sizes, and suppose that also EAIS are normalised so that
tr(Ss) = d. Then, for all a € (0,1), the test that rejects Hy : R(Ss) = 0 if and only if R(Ss) > Cy has Type

I error bounded by o, where

2
.- G [Is]+los(S)/a) | |51 + los(ISl/0)
c Ses ns ns

and Cy > 0 is a universal constant. Moreover, for 3 € (0,1), if R(Xg) > Co+Cpg, then P{R(is) < C,} <B.

The proof is essential analogous to the one of Theorem 7, except for the fact that now we used directly

Proposition 32 in Appendix D instead of Proposition 14. Also, observe that the separation rate in this case
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is analogous to the one we found in Theorem 7, being of the order of

€ < s 151 1oB(S1/)
SeS ns
under ng 2 |S] for all |S| € S, which is necessary to have a consistent test. As far as the drawbacks are
concerned, notice that here we need to normalise the sample covariance matrix a priori, so that t_r(is) =d,
which is somehow annoying. What is even more disturbing is the hypothesis that the subgaussian proxy /2
needs to be significantly bigger than one, due to the fact that for a v-subgaussian random variable X we
have Var[X] < v?. Hence, the hypothesis v? > 1 is necessary to have a little flexibility in the variances,
while still satisfying tfr(fls) = d. There is no reason to assume that 2 > 1, so that this is another point in

favour of the incompatibility measure R.

Appendix C Auxiliary results in SDP

Semi-definite programs are linear optimisation problems over spectrahedra, i.e. sets of the form

S{(azl,...,xm)GRm:AoJrZAiwiiO},

i=1

for some given symmetric matrices Ag, Ay, ..., A,,. An SDP problem in standard primal form is written as

minimize (C, X)

subject to X > 0and (A;, X)=1b;, i€ [m],

where C, A; are given symmetric matrices, and b; are given scalars. For every semi-definite program in

primal form, there is another associated SDP, called the dual problem, that can be stated as

maximize  bTy

subject to  Y.7", Ay < C,

where b = (b1,...,by), and y = (y1,...,ym) are the dual decision variables. As in linear programming, the
so-called weak duality holds, meaning that if X and y are any two feasible solutions of the primal and dual

problems respectively, we have

m

(C,X) ="y = (C, X) =Y i (45, X) = <C_§:Aiyi,x> > 0.

Unfortunately, the equality is not always satisfied in general (see Example 2.14. in Blekherman et al. (2012)),
but under some mild conditions, strong duality holds. One of such conditions is Slater’s condition, where
either the primal or the dual problem is required to be strictly feasible, meaning that there exists either X > 0
for the primal problem satisfying (A;, X) = b;, for i € [m], or y for the dual satisfying Y*, A;y; < C. If
this is the case, it can be shown that strong duality holds (Theorem 2.15. in Blekherman et al. (2012),
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Theorem 3.1. in Vandenberghe and Boyd (1996)). Furthermore, if the primal is strictly feasible, then the
dual optimum is attained, and viceversa. In the proof, we show that it is possible to define R as the optimal
value of an SDP problem written in primal form, find its dual and show that Slater’s condition is satisfied.
This, apart from enabling us to prove Proposition 5, ensures that R can be computed explicitly using
standard SDP libraries, which are available for almost all programming languages. As for the computational
cost, for SDP problems in their general setting, without extra assumptions like strict complementarity, no
polynomial-time algorithms are known, and there are examples of SDPs for which every solution needs
exponential space (Khachiyan and Porkolab, 1997). Moreover, Ramana (1997) showed that SDP lies either
in the intersection of NP and co-NP, or outside the union of NP and co-NP, and nothing better than this is
known. Luckily, if Slater’s condition is satisfied, like in our case, then the primal-dual interior point method
has a computational complexity which is polynomial in the number of constraints and the dimension of the
unknown square matrix (Section 6.4.1. of Nesterov and Nemirovskii (1994), Section 5.7. of Vandenberghe
and Boyd (1996)), which ensures that R can be always computed efficiently without additional assumptions.

Finally, we recall Farkas’ lemma for SDP problems, and its proof, following Lemma 6.3.2 in Lovéasz (2003).

Proposition 26 (Farkas’ lemma for Semi-definite Programming). Let A;,..., A, be symmetric m X m
matrices. The system
$1A1++£EnAn =0

has no solution in x1,...,x, if and only if there exists a symmetric matric Y # 0 such that
(A1,Y)=0
(A2,Y) =0
(A4,,Y)=0
Y = 0.

Proof. The set P;;, of m x m positive semi-definite matrices forms a closed convex cone. If
1AL+ ..+ x,A, =0

has no solution, then the linear subspace £ of matrices of the form z1A; + ...z, A, is disjoint from the
interior of P, which in turn implies that £ is contained in a hyperplane that is disjoint from the interior of
P;,. This hyperplane can be described as {X € P}, : (Y, X) = 0} for a certain symmetric Y, where we may
assume that (Y, X) > 0 for every X € P* . Then, since a matrix A is positive semi-definite if and only if
(A, B) > 0 for every positive semi-definite matrix B, we conclude that Y # 0, Y = 0, and, since A; belong
to £, that (4;,Y) = 0. O
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Appendix D Technical inequalities

Proposition 27 (Tail bound for a sum of subgausssian RVs). Suppose that the variables X;,i = 1,...,n,

are independent, and X; has mean p; and sub-Gaussian parameter o;. Then for all t > 0, we have
n 2
P {; (X5 — ) > t} < exp {_W} .
Proof. See Proposition 2.5 in Wainwright (2019). O

Proposition 28 (Euclidean norm of a subgaussian RV). Let X € R be a subgaussian random vector with

proxy 0. Then, for all § € (0,1), we have

]P{||X||2 > dov/d + 20«/10g(1/5)} <.

Equivalently, for allt > 0 we have
P{|IX|2 >t} < 5%exp {—t*/80%} .

Proof. We break the proof up into two steps: use a discretisation argument to reduce the problem to the
task of computing the maximum of finitely many random variables, and then use standard concentration

inequalities. Firstly, let N, be an e-net of the d-dimensional sphere S*~1. Then,

1
Xl £ — TX.
Xl < 7= v
This follows from a discretization argument, similar to the one used in the proof of Proposition 32. Choosing

e =1/2 gives

t2 d t2
P{HXH? > t} < |N1/2|eXp{—&‘2} < 5 exp{—gaz} .

Inverting the bound yields the first claim. O

Proposition 29 (Tail bound for Binomial RVs). Let X ~ Bin(n,n"1). Then, for all t > 1, we have
ot—1

P{X >t} < n

Proof. By the standard Chernoff argument, for all A > 0 we have

P{X >t} <e ME[e*] =e M1 —n"t 4 n7tet)"

<e )\tee 1 —e At+e 1,

where in the last inequality we used the fact that 1 + z < e”. Choosing A = logt concludes the proof. O

Proposition 30 (Tail bound for a sum of subexponential RVs). Consider an independent sequence { Xy };_,

of random variables, such that Xj has mean uy, and is sub-exponential with parameters (v, ay). Then,
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S orey (Xk — pi) is sub-exponential with the parameters (v, ), where

Qe = max o and v, :=
k=1,....n

and
_n2¢2 2
1 — 2¢ 27 for0<t< =
S pIC NI EL Y S
nia 2e” 2ex  fort > %
Proof. See equation (2.18) in Wainwright (2019). O

Proposition 31 (The square of a subgaussian is subexponential). If X is o-subgaussian, then X? is subex-

ponential with parameters (v, a) = (4v/202,402).

Proof. Using the definitions of the Orlicz norm || - ||y, and || - ||y, (see Wainwright (2019); Vershynin (2019)),
it is easy to prove that the product of two subgaussian RVs is subexponential (Lemma 2.7.7. in Vershynin
(2019)), and that X is subgaussian if and only if X2 is subexponential (Lemma 2.7.6. in Vershynin (2019)).

As for its subexponential parameters, assuming WLOG that X has mean zero, we know that
E[X] <e¥ forall A €R.

Our goal is to find a similar bound for the moment generating function of X2, and, to this aim, we will make

use of the fact that the moments of X are bounded as follows
E[|X]|] < TQT/QUTF(T/Q), for all » > 0,

where T'(r) is the Gamma function. Now, calling u = E[X?], by power series expansion and since I'(r) =

(r — 1)! for an integer r, we have

r T
]E[eA(X )}—lJr)\]E — 4] +ZAE 1) ]
o0 .
E [|X|?] A"2r2"0? T (r)
suéiﬂ 5”;—74
_ - ror+l1 2r __ 8)‘204
_1+;A2 o =14

By making |A| < 1/402, we have 1/ (1 — 2)\02) < 2. Finally, since for every a € R it holds 1 4+ a < e®, we
have that the MGF of X? satisfies
E {GA(X“E[XQD} <" forall [N < 1/ (402) .

3

Thus, we obtained a bound for the moment generating function of the subexponential variable X2, that is

similar to that of subgaussian variables but holds only for a small range of . O
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Proposition 32 (Concentration inequality for Covariance Matrices). Let Xi,...,X,, be an i.i.d sequence
of o-subgaussian random vectors with zero mean and covariance matriz €2, and let ﬁn = %Z:L:l X: XT be
the sample covariance matriz. Then there exists a universal constant C' > 0 such that, for 6 € (0,1), with

probability at least 1 — §

d+log(2/6) d+log(2/6) } .

10, — Q|2 < Co? max{ ,

Equivalently, for all t > 0 we have

2
~ t t
d .

Proof. We break the proof up into two steps: use a discretisation argument to reduce the problem to the
task of computing the maximum of finitely many random variables, and then use standard concentration
inequalities. Firstly, let A € S?*? and let N, be an e-net of the d-dimensional sphere S¢~!'. Then

1
I14ll2 < 3=, max " Ayl .

Indeed, let y € N, satisfy ||z — y|| < e. Then

’;vAac — yTAy’ = |$TA(9C —y)+ ZUTA(QU - y)’
< |z Az — )| + [yT Az — y)|

Looking at |27 A(z — y)| we have

|27 Az —y)| < [|A(z —») | [l|]
< [lAll2 = =yl [l|
< =1

< [|All2€

Applying the same argument to |yTA(x — y)| gives us |xAx — yTAy| < 2¢||A||2- To complete the proof,
we see tha 2 = Mmax,egi—1 21 Ax < 2¢||Al|2 + max,en, y' Ay. Rearranging the equation gives 5 <

that || A csa1 xT Ar < 2¢||A ven. YT Ay. R ing th tion gi A2 <
5 maxyen, y© Ay as desired. Then, if we apply this result to Q, — Q with € = 1/4 we have

€0 — Q2 < 2 max

1/4

vt (ﬁn — Q) v’

Additionally, we know that card(Ny,4) < 9¢ (see Lemma 5.7 and Example 5.8 in Wainwright (2019). From

here, we can apply standard concentration tools to get

P{nﬁn_gng Zt} g]p( max
’UGN]/4

o7 (ﬁn - Q) v’ > t/2>

vl (ﬁn - Q) v;| > t/2) ,

< card(Nyyy) - P (
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where v; is a unit vector on the d-dimensional sphere. Now, viT (Qn — Q) v; can be rewritten as

(- 0)n= Y 07X B 07 x)]
j=1

1
EZZj_E[Zj]a
j=1

where the Z; — E[Z;] are independent subexponential of parameters (v,a) = (4v202,40?), since v] X;

are o-subgaussian by definition of subgaussian random vector. Applying the subexponential tail bound in

2
t t
> < — i — — .
_t/2}_2exp{ nmln{<16a2> 71602}}
~ J , £\ ot
P{||Qn79||22t}§29 eXp § —nmin @ ,@ .

Inverting the bound gives the first result. For further reference, please refer to Chapter 3 in Wainwright
(2019). O

Proposition 30 gives us

it

viT (ﬁn - Q) v;

so that

Proposition 33 (Theorem 3.1 in Rudelson and Vershynin (2007)). Let X be a random vector in R, which
is uniformly bounded almost everywhere: || X||o < M. Assume for normalisation that |EXXT |y < 1. Let
X1...X, be independent copies of X. Then, for every t € (0,1), there exists a universal constant K > 0

such that

1™ Knt?
P=) X, X —ExXT ty <2 - %
{ n Z ’ ) b= M2logn

i=1
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